【題目】完成下面的證明:

如圖,已知∠1、∠2互為補(bǔ)角,且∠3=∠B,

求證:∠AED=∠ACB

證明:∵∠1+2180°,∠2+4180°

∴∠1=∠4 ______

ABEF_______

∴∠3____________

又∠3=∠B

∴∠B______________

DEBC ________

∴∠AED=∠ACB _______

【答案】等式基本性質(zhì);內(nèi)錯角相等,兩直線平行;∠ADE;兩直線平行,內(nèi)錯角相等;∠ADE;等量代換;同位角相等,兩直線平行;兩直線平行,同位角相等.

【解析】

根據(jù)等式的基本性質(zhì)、平行線的判定和性質(zhì)以及等量代換進(jìn)行推理填空即可.

證明:∵∠1+2180°,∠2+4180°,

∴∠1=∠4 (等式基本性質(zhì)),

ABEF(內(nèi)錯角相等,兩直線平行),

∴∠3=∠ADE(兩直線平行,內(nèi)錯角相等),

又∠3=∠B,

∴∠B=∠ADE(等量代換),

DEBC(同位角相等,兩直線平行),

∴∠AED=∠ACB (兩直線平行,同位角相等),

故答案為:等式基本性質(zhì);內(nèi)錯角相等,兩直線平行;∠ADE;兩直線平行,內(nèi)錯角相等;∠ADE;等量代換;同位角相等,兩直線平行;兩直線平行,同位角相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將一塊含角的三角板ABO的一邊BO放在直線MN上,AB邊在直線MN的上方,其中,另一塊含角的三角板POQ的一邊OQ在直線MN上,另一邊OP在直線MN的下方.

現(xiàn)將圖1中的三角板POQ繞點(diǎn)O按順時針方向旋轉(zhuǎn),當(dāng)直線MN恰好為的平分線時,如圖2所示,則的度數(shù)______度;

繼續(xù)將圖2中的三角板繞點(diǎn)O按順時針方向旋轉(zhuǎn)至圖3的位置,使得邊OA落在的內(nèi)部,且AO恰好為的平分線時,求的度數(shù);

在上述直角三角板從圖1按順時針方向旋轉(zhuǎn)至圖位置為止,這個過程中,若三角板POQ繞點(diǎn)O以每秒的速度勻速旋轉(zhuǎn),當(dāng)三角板POQOP邊或OQ邊所在直線平分,則求此時三角板POQ繞點(diǎn)O旋轉(zhuǎn)的時間t的值請直接寫出答案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE把∠BOD分成兩部分;

(1)直接寫出圖中∠AOC的對頂角為   ,∠BOE的鄰補(bǔ)角為   ;

(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一塊直角三角板放置在銳角上,使得該三角板的兩條直角邊恰好分別經(jīng)過點(diǎn)

1)如圖①,若時,點(diǎn)內(nèi),則 度,____度, 度;

2)如圖②,改變直角三角板的位置,使點(diǎn)內(nèi),請?zhí)骄?/span>之間存在怎樣的數(shù)量關(guān)系,并驗(yàn)證你的結(jié)論;

3)如圖③,改變直角三角板的位置,使點(diǎn)外,且在邊的左側(cè),直接寫出三者之間存在的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,點(diǎn)EAC,∠AEB=∠ABC.

(1)1,∠BAC的角平分線AD,分別交CB、BED、F兩點(diǎn),求證:∠EFD=∠ADC;

(2)2,△ABC的外角∠BAG的角平分線AD,分別交CBBE的延長線于D、F兩點(diǎn),試探究(1)中結(jié)論是否仍成立?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的10張卡片上分別寫有1120十個數(shù)字,將它們背面朝上洗勻后,任意抽一張,將下列事件發(fā)生的機(jī)會的大小填在橫線上.

(1)P1(抽到數(shù)字11)=_______

(2)P2(抽到兩位數(shù))=_______,P3(抽到一位數(shù))=_______

(3)P4(抽到的數(shù)大于10)_______,P5(抽到的數(shù)大于16)_______,P6(抽到的數(shù)小于16)_______

(4)P7(抽到的數(shù)是2的倍數(shù))=_______,P8(抽到的數(shù)是3的倍數(shù))=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)P是弦BC上一動點(diǎn)(不與B,C重合),過點(diǎn)P作PE⊥AB,垂足為E,在射線EP上取點(diǎn)D使得DC=DP,連接DC.

(1)求證:DC是⊙O的切線;
(2)若∠CBA=30°,射線EP交⊙O于點(diǎn) F,當(dāng)點(diǎn) F恰好是弧BC的中點(diǎn)時,判斷以B,O,C,F(xiàn)為頂點(diǎn)的四邊形是什么特殊四邊形?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明早晨跑步,他從自己家出發(fā),向東跑了2km到達(dá)小彬家,繼續(xù)向東跑了1.5km到達(dá)小紅家,然后又向西跑到學(xué)校.如果小明跑步的速度均勻的,到達(dá)小彬家用了8分鐘,整個跑步過程用時共32分鐘.

1)以小明家為原點(diǎn)、向東為正方向,用1個單位長度表示1km,在圖中的數(shù)軸上,分別用點(diǎn)A表示出小彬家,用點(diǎn)B表示出小紅家;

2)用點(diǎn)C表示出學(xué)校的位置;

3)求小彬家與學(xué)校之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1+∠2=180°,∠B=∠3,你能判斷∠C∠AED的大小關(guān)系嗎?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案