【題目】如圖(1),菱形ABCD對角線AC、BD的交點(diǎn)O是四邊形EFGH對角線FH的中點(diǎn),四個(gè)頂點(diǎn)A、B、C、D分別在四邊形EFGH的邊EF、FG、GH、HE上.

(1)求證:四邊形EFGH是平行四邊形;
(2)如圖(2)若四邊形EFGH是矩形,當(dāng)AC與FH重合時(shí),已知 =2,且菱形ABCD的面積是20,求矩形EFGH的長與寬.

【答案】
(1)證明:∵點(diǎn)O是菱形ABCD對角線AC、BD的交點(diǎn),

∴OA=OC,OD=OB,

∵點(diǎn)O是線段FH的中點(diǎn),

∴OF=OH.

在△AOF和△COH中,有 ,

∴△AOF≌△COH(SAS),

∴∠AFO=∠CHO,

∴AF∥CH.

同理可得:DH∥BF.

∴四邊形EFGH是平行四邊形


(2)設(shè)矩形EFGH的長為a、寬為b,則AC=

=2,

∴BD= AC= ,OB= BD= ,OA= AC=

∵四邊形ABCD為菱形,

∴AC⊥BD,

∴∠AOB=90°.

∵四邊形EFGH是矩形,

∴∠AGH=90°,

∴∠AOB=∠AGH=90°,

又∵∠BAO=∠CAG,

∴△BAO∽△CAG,

,即

解得:a=2b①.

∵S菱形ABCD= ACBD= =20,

∴a2+b2=80②.

聯(lián)立①②得:

解得: ,或 (舍去).

∴矩形EFGH的長為8,寬為4


【解析】(1)根據(jù)菱形的性質(zhì)可得出OA=OC,OD=OB,再由中點(diǎn)的性質(zhì)可得出OF=OH,結(jié)合對頂角相等即可利用全等三角形的判定定理(SAS)證出△AOF≌△COH,從而得出AF∥CH,同理可得出DH∥BF,依據(jù)平行四邊形的判定定理即可證出結(jié)論;(2)設(shè)矩形EFGH的長為a、寬為b.根據(jù)勾股定理及邊之間的關(guān)系可找出AC= ,BD= ,利用菱形的性質(zhì)、矩形的性質(zhì)可得出∠AOB=∠AGH=90°,從而可證出△BAO∽△CAG,根據(jù)相似三角形的性質(zhì)可得出 ,套入數(shù)據(jù)即可得出a=2b①,再根據(jù)菱形的面積公式得出a2+b2=80②,聯(lián)立①②解方程組即可得出結(jié)論.本題考查了平行四邊形的判定、全等三角形的判定及性質(zhì)、菱形的性質(zhì)、矩形的性質(zhì)以及相似三角形的判定及性質(zhì),解題的關(guān)鍵:(1)找出AF∥CH、DH∥BF;(2)找出關(guān)于a、b的二元二次方程組.本題屬于中檔題,難度不大,但解題過程叫繁瑣,解決該題型題目時(shí),根據(jù)相似三角形的性質(zhì)找出對應(yīng)邊的比例關(guān)系是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABCBA=BC,點(diǎn)DAB延長線上一點(diǎn),DF⊥ACFBCE,

求證:△DBE是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E正方形ABCD外一點(diǎn),點(diǎn)F是線段AE上一點(diǎn),△EBF是等腰直角三角形,其中∠EBF=90°,連接CE、CF.

(1)求證:△ABF≌△CBE;
(2)判斷△CEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把八個(gè)等圓按相鄰兩兩外切擺放,其圓心連線構(gòu)成一個(gè)正八邊形,設(shè)正八邊形內(nèi)側(cè)八個(gè)扇形(無陰影部分)面積之和為S1 , 正八邊形外側(cè)八個(gè)扇形(陰影部分)面積之和為S2 , 則 =(

A.
B.
C.
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系網(wǎng)格中,將△ABC進(jìn)行位似變換得到△A1B1C1

(1)△A1B1C1與△ABC的位似比是;
(2)畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2
(3)設(shè)點(diǎn)P(a,b)為△ABC內(nèi)一點(diǎn),則依上述兩次變換后,點(diǎn)P在△A2B2C2內(nèi)的對應(yīng)點(diǎn)P2的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠AOB=41°,點(diǎn)P為∠AOB內(nèi)的一點(diǎn),分別作出P點(diǎn)關(guān)于OA,OB的對稱點(diǎn),,連接OAM,交OBN,,則PMN的周長為_________,∠MPN________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、EBC上,連接ADAE,如果只添加一個(gè)條件使∠DAB=∠EAC,則添加的條件不能為( )

A. BD=CE B. AD=AE C. DA=DE D. BE=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(已知反比例函數(shù)y= 與一次函數(shù)y=x+2的圖象交于點(diǎn)A(﹣3,m)
(1)求反比例函數(shù)的解析式;
(2)如果點(diǎn)M的橫、縱坐標(biāo)都是不大于3的正整數(shù),求點(diǎn)M在反比例函數(shù)圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在線段AB的同側(cè)作射線AM和BN,若∠MAB與∠NBA的平分線分別交射線BN,AM于點(diǎn)E,F(xiàn),AE和BF交于點(diǎn)P.如圖,點(diǎn)點(diǎn)同學(xué)發(fā)現(xiàn)當(dāng)射線AM,BN交于點(diǎn)C;且∠ACB=60°時(shí),有以下兩個(gè)結(jié)論:
①∠APB=120°;②AF+BE=AB.
那么,當(dāng)AM∥BN時(shí):

(1)點(diǎn)點(diǎn)發(fā)現(xiàn)的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請求出∠APB的度數(shù),寫出AF,BE,AB長度之間的等量關(guān)系,并給予證明;
(2)設(shè)點(diǎn)Q為線段AE上一點(diǎn),QB=5,若AF+BE=16,四邊形ABEF的面積為32 ,求AQ的長.

查看答案和解析>>

同步練習(xí)冊答案