【題目】某物流公司的甲、乙兩輛貨車分別從A、B兩地同時(shí)相向而行,并以各自的速度勻速行駛,途徑配貨站C,甲車先到達(dá)C地,并在C地用1小時(shí)配貨,然后按原速度開往B地,乙車從B地直達(dá)A地,下圖是甲、乙兩車間的距離(千米)與乙車出發(fā)(時(shí))的函數(shù)的部分圖像

1A、B兩地的距離是 千米,甲車出發(fā) 小時(shí)到達(dá)C地;

2)求乙車出發(fā)2小時(shí)后直至到達(dá)A地的過程中,的函數(shù)關(guān)系式及的取值范圍,并在圖中補(bǔ)全函數(shù)圖像;

3)乙車出發(fā)多長時(shí)間,兩車相距150千米?

【答案】1300,1.5;23

【解析】

試題1300,1.5; 2

(2)由題知道:乙的速度為(千米/小時(shí)),

甲乙速度和為(千米/小時(shí)),所以甲速度為120千米/小時(shí).

2小時(shí)這一時(shí)刻,甲乙相遇,在22.5小時(shí),甲停乙動(dòng);

2.53.5小時(shí),甲乙都運(yùn)動(dòng),3.55小時(shí)甲走完全程,乙在運(yùn)動(dòng),

D2.5,30,E(3.5,210),F(5,300).

設(shè)CD解析式為,則有,解得,;

同理可以求得:DE解析式為;EF解析式為.

綜上. 6分圖象如下.

7

3)當(dāng)時(shí),可以求得AB解析式為,

當(dāng)y=150時(shí),得小時(shí),當(dāng)時(shí),代入小時(shí).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長線交于D.

(1)求證:ADC∽△CDB;

(2)若AC=2,AB=CD,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一幅長60 cm、寬40 cm的長方形風(fēng)景畫的四周鑲一條金色紙邊,制成一幅長方形掛圖,如圖.如果要使整個(gè)掛圖的面積是2816 cm2,設(shè)金色紙邊的寬為x cm,那么x滿足的方程是(  )

A. (60+2x)(40+2x)=2816

B. (60+x)(40+x)=2816

C. (60+2x)(40+x)=2816

D. (60+x)(40+2x)=2816

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P的坐標(biāo)是a,b,從-2,-1,0,1,2這五個(gè)數(shù)中任取一個(gè)數(shù)作為a的值,再從余下的四個(gè)數(shù)中任取一個(gè)數(shù)作為b的值,則點(diǎn)Pa,b在平面直角坐標(biāo)系中第二象限內(nèi)的概率是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的部分對應(yīng)值如下表所示:

-1

0

1

2

3

4

6

1

-2

-3

-2

m

下面有四個(gè)論斷:

①拋物線的頂點(diǎn)為;

③關(guān)于的方程的解為;

其中,正確的有___________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、C、P四點(diǎn)均在邊長為1的小正方形網(wǎng)格格點(diǎn)上

(1)判斷PBAABC是否相似并說明理由;

(2)BAC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

1)(x22=16

2x24x3=0 (配方法)

3)(x1)(x + 2= 2x + 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市居民用水實(shí)行以戶為單位的三級階梯收費(fèi)辦法:

第一級:居民每戶每月用水噸以內(nèi)含噸,每噸收水費(fèi)元;

第二級:居民每戶每月用水超過噸但不超過噸,未超過的部分按照第一級標(biāo)準(zhǔn)收費(fèi),超過部分每噸收水費(fèi)元;

第三級:居民每戶每月用水超過噸,未超過噸的部分按照第一、二級標(biāo)準(zhǔn)收費(fèi),超過部分每噸收水費(fèi)元;

設(shè)一戶居民月用水噸,應(yīng)繳水費(fèi)元,之間的函數(shù)關(guān)系如圖所示,

(Ⅰ)根據(jù)圖象直接作答:___________,_______________,_______________;

(Ⅱ)求當(dāng)時(shí),之間的函數(shù)關(guān)系式;

(Ⅲ)把上述水費(fèi)階梯收費(fèi)辦法稱為方案①,假設(shè)還存在方案②;居民每戶月用水一律按照每噸元的標(biāo)準(zhǔn)繳費(fèi).當(dāng)居民用戶月用水超過噸時(shí),請你根據(jù)居民每戶月用水量的大小設(shè)計(jì)出對居民繳費(fèi)最實(shí)惠的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組.

請結(jié)合題意填空,完成本題的解答.

()解不等式①,得_______

()解不等式②,得________

()把不等式①和②的解集在數(shù)軸上表示出來:

()原不等式組的解集為_______.

查看答案和解析>>

同步練習(xí)冊答案