【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點.
(1)求的值和圖象的頂點坐標;
(2)點在該二次函數(shù)圖象上.
①當時,求的值;
②若點到軸的距離小于2,請根據(jù)圖象直接寫出的取值范圍;
③直接寫出點與直線的距離小于時的取值范圍.
【答案】(1),圖象的頂點坐標為;(2)①當時,;②;③.
【解析】
(1)根據(jù)待定系數(shù)法,即可求出a的值,把二次函數(shù)解析式,化為頂點式,即可得到頂點坐標;
(2)①把代入二次函數(shù)解析式,即可;②設(shè)直線x=-2和直線x=2與拋物線的交點為A,B,可得:A(-2,3),B(2,11),進而即可求解;③設(shè)直線交x軸,y軸于點D,C,過點Q作QM⊥CD于點M,過點Q作QN∥y軸,交CD于點N,可得QNM是等腰直角三角形,當QM=時,則QN=2,設(shè),N(m,m+5),列出關(guān)于m的方程,求出m的值,進而即可得到結(jié)論.
(1)把代入中,得:
,
∴,
∴圖象的頂點坐標為;
(2)①在該二次函數(shù)圖象上,
∴當時,;
②設(shè)直線x=-2和直線x=2與拋物線的交點為A,B,如圖,
把x=2或x=-2,代入,得y=11或3,
∴A(-2,3),B(2,11),
當點到軸的距離小于2時,點Q在A,B之間的拋物線上(不包含A,B),
;
③設(shè)直線交x軸,y軸于點D,C,則D(-5,0),C(0,5),
∴OC=OD,∠DCO=45°,
過點Q作QM⊥CD于點M,過點Q作QN∥y軸,交CD于點N,
∴∠QNM=∠DCO=45°,
∴QNM是等腰直角三角形,當QM=時,則QN=2,
在該二次函數(shù)圖象上,點N在直線上,
∴設(shè),N(m,m+5),
∴,化簡得:或,
解得:,
∴點與直線的距離小于時的取值范圍為:.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,以等邊的邊為直徑作,分別交,于點,,過點作交于點.
(1)求證:是的切線;
(2)若等邊的邊長為8,求由、、圍成的陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,AC=2,BC=3.點D為AC的中點,聯(lián)結(jié)BD,過點C作CG⊥BD,交AC的垂線AG于點G,GC分別交BA、BD于點F、E.
(1)求GA的長;
(2)求△AFC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下表,從左邊第一個格子開始向右數(shù),在每個小格子中都填入一個整數(shù),使得其中仼意三個相鄰格子中所填整數(shù)之和都相等.
5 | 4 | …… |
(1)可求得_____;_____;_____.
(2)第2019個格子中的數(shù)為______;
(3)前2020個格子中所填整數(shù)之和為______.
(4)前個格子中所填整數(shù)之和是否可能為2020?若能,求出的值,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax+bx+c圖象的一部分,其對稱軸為x=-1,且過點(-3,0).下列說法:①abc<0;②3a+c=0;③4a+2b+c<0;④若(-5,y1),(,y2)是拋物線上兩點,則y1> y2.其中說法正確的是( )
A.①②B.②③C.①②④D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開設(shè)了“3D”打印、數(shù)學史、詩歌欣賞、陶藝制作四門校本課程,為了解學生對這四門校本課程的喜愛情況,對學生進行了隨機問卷調(diào)查(問卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制了(圖1)、(圖2)兩幅均不完整的統(tǒng)計圖.
請您根據(jù)圖中提供的信息回答下列問題:
(1)統(tǒng)計圖中的a= ,b= ;
(2)“D”對應扇形的圓心角為 度;
(3)根據(jù)調(diào)查結(jié)果,請您估計該校1200名學生中最喜歡“數(shù)學史”校本課程的人數(shù);
(4)小明和小亮參加校本課程學習,若每人從“A”、“B”、“C”三門校本課程中隨機選取一門,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一門校本課程的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對稱軸為直線的拋物線經(jīng)過、兩點,與軸的另一個交點為,點在軸上,且.
(1)求該拋物線的表達式;
(2)設(shè)該拋物線上的一個動點的橫坐標為.
①當時,求四邊形的面積與的函數(shù)關(guān)系式,并求出的最大值;
②點在直線上,若以為邊,點、、、為頂點的四邊形是平行四邊形,請求出所有符合條件的點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰△ABC的底邊BC=20,面積為120,點F在邊BC上,且BF=3FC,EG是腰AC的垂直平分線,若點D在EG上運動,則△CDF周長的最小值為__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com