【題目】已知矩形的兩條對角線的夾角為60°,如果一條對角線長為6,那么矩形的面積為___________

【答案】9

【解析】分析:先畫圖,由題意可知四邊形ABCD是矩形,AC=6,AOB=60°,根據(jù)矩形性質(zhì)可知OA=OB,ABC=90°,易證AOB是等邊三角形,即可求出AB的長,再利用勾股定理求出BC的長,然后再利用矩形的面積公式求解即可

詳解:如圖所示,在矩形ABCD中,∠AOB=60°,AC=6,

∵四邊形ABCD是矩形,

OB =OA=,ABC=90°,

又∵∠AOB=60°,

∴△AOB是等邊三角形,

AB=AO=3,

RtABC中,由勾股定理得,

,

S矩形ABCD=AB×BC=3×3=9.

故答案為:9.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近兩年,國際市場黃金價格漲幅較大,中國交通銀行推出沃德金的理財產(chǎn)品,即以黃金為投資產(chǎn)品,投資者從黃金價格的上漲中賺取利潤.上周五黃金的收盤價為285/克,下表是本周星期一至星期五黃金價格的變化情況.(注:星期一至星期五開市,星期六.星期日休市)

星期

收盤價的變化(與前一天收盤價比較)

+7

+5

+8

問:(1)本周星期三黃金的收盤價是多少?

(2)本周黃金收盤時的最高價.最低價分別是多少?

(3)上周,小王以周五的收盤價285/克買入黃金1000克,已知買入與賣出時均需支付成交金額的千分之五的交易費(fèi),賣出黃金時需支付成交金額的千分之三的印花稅.本周,小王以周五的收盤價全部賣出黃金1000克,他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點C(1,2)分別作x軸、y軸的平行線,交直線y=﹣x+6于A、B兩點,若反比例函數(shù)y= (x>0)的圖象與△ABC有公共點,則k的取值范圍是( )

A.2≤k≤9
B.2≤k≤8
C.2≤k≤5
D.5≤k≤8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上,點A,B,C表示的數(shù)分別是-6,10,12.點A以每秒3個單位長度的速度向右運(yùn)動,同時線段BC以每秒1個單位長度的速度也向右運(yùn)動.

(1)運(yùn)動前線段AB的長度為________;

(2)當(dāng)運(yùn)動時間為多長時,點A和線段BC的中點重合?

(3)試探究是否存在運(yùn)動到某一時刻,線段AB=AC?若存在,求出所有符合條件的點A表示的數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教師節(jié)當(dāng)天,出租車司機(jī)小王在東西向的街道上免費(fèi)接送教師,規(guī)定向東為正,向西為負(fù),當(dāng)天出租車的行程如下(單位:千米):,,,,,

將最后一名老師送到目的地時,小王距出發(fā)地多少千米?方位如何?

若汽車耗油量為/千米,則當(dāng)天耗油多少升?若汽油價格為/升,則小王共花費(fèi)了多少元錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛貨車從倉庫O出發(fā)在東西街道上運(yùn)送水果,規(guī)定向東為正方向,一次到達(dá)的5個銷售地點依次分別為A,B,C,D,E,最后回到倉庫O,貨車行駛的記錄(單位:千米)如下:+1,+3,﹣6,﹣1,﹣2,+5.請問:

(1)請以倉庫O為原點,向東為正方向,選擇適當(dāng)?shù)膯挝婚L度,畫出數(shù)軸,并標(biāo)出A,B,C,D,E的位置;

(2)試求出該貨車共行駛了多少千米?

(3)如果貨車運(yùn)送的水果以100千克為標(biāo)準(zhǔn)重量,超過的千克數(shù)記為正數(shù),不足的千克數(shù)記為負(fù)數(shù),則運(yùn)往A,B,C,D,E五個地點的水果重量可記為:

+50,﹣15,+25,﹣10,﹣15,則該貨車運(yùn)送的水果總重量是多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,則∠A、∠C、∠E、∠F滿足的數(shù)量關(guān)系是(  )

A. A=∠C+∠E+∠F B. A+∠E﹣∠C﹣∠F=180°

C. A﹣∠E+∠C+∠F=90° D. A+∠E+∠C+∠F=360°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E,F(xiàn)是對角線AC上的兩點且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四邊形EBFD為平行四邊形;⑤SADE=SABE;⑥AF=CE這些結(jié)論中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的對稱軸為經(jīng)過點(1,0)的直線,其圖象與x軸交于點A、B,且過點C(0,﹣3),其頂點為D.

(1)求這個二次函數(shù)的解析式及頂點坐標(biāo);
(2)在y軸上找一點P(點P與點C不重合),使得∠APD=90°,求點P的坐標(biāo);
(3)在(2)的條件下,將△APD沿直線AD翻折得到△AQD,求點Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案