【題目】 已知△ABC中,∠A=25°,∠B=40°.
(1)求作:⊙O,使得⊙O經(jīng)過A、C兩點(diǎn),且圓心O落在AB邊上.(要求尺規(guī)作圖,保留作圖痕跡,不必寫作法)
(2)求證:BC是(1)中所作⊙O的切線.

【答案】
(1)解:作圖如圖1:


(2)證明:如圖2,

連接OC,

∵OA=OC,∠A=25°

∴∠BOC=50°,

又∵∠B=40°,

∴∠BOC+∠B=90°

∴∠OCB=90°

∴OC⊥BC

∴BC是⊙O的切線.


【解析】(1)作出線段AC的垂直平分線進(jìn)而得出AC垂直平分線與線段AB的交點(diǎn)O,進(jìn)而以AO為半徑做圓即可;(2)連接CO,再利用已知得出∠OCB=90°,進(jìn)而求出即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解切線的判定定理的相關(guān)知識,掌握切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,點(diǎn)O是△ABC的內(nèi)心,連接OB、OC,過點(diǎn)O作EF∥BC分別交AB、AC于點(diǎn)E、F,已知BC=a (a是常數(shù)),設(shè)△ABC的周長為y,△AEF的周長為x,在下列圖象中,大致表示y與x之間的函數(shù)關(guān)系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4cm,動點(diǎn)P、Q同時(shí)從點(diǎn)A出發(fā),以1cm/s的速度分別沿A→B→C和A→D→C的路徑向點(diǎn)C運(yùn)動,設(shè)運(yùn)動時(shí)間為x(單位:s),四邊形PBDQ的面積為y(單位:cm2),則y與x(0≤x≤8)之間函數(shù)關(guān)系可以用圖象表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展以感恩教育為主題的藝術(shù)活動,舉辦了四個(gè)項(xiàng)目的比賽,它們分別是演講、唱歌、書法、繪畫.要求每位同學(xué)必須參加,且限報(bào)一項(xiàng)活動.以九年級(1)班為樣本進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪成如圖1、圖2所示的兩幅統(tǒng)計(jì)圖.請你結(jié)合圖示所給出的信息解答下列問題.
(1)求出參加繪畫比賽的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比?
(2)求出扇形統(tǒng)計(jì)圖中參加書法比賽的學(xué)生所在扇形圓心角的度數(shù)?
(3)若該校九年級學(xué)生有600人,請你估計(jì)這次藝術(shù)活動中,參加演講和唱歌的學(xué)生各有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于(
A.30°
B.40°
C.50°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 已知△ABC中,∠A=25°,∠B=40°.
(1)求作:⊙O,使得⊙O經(jīng)過A、C兩點(diǎn),且圓心O落在AB邊上.(要求尺規(guī)作圖,保留作圖痕跡,不必寫作法)
(2)求證:BC是(1)中所作⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列幾何體中,同一個(gè)幾何體的主視圖與俯視圖不同的是(
A.圓柱
B.正方體
C.圓錐
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知過原點(diǎn)O的兩直線與圓心為M(0,4),半徑為2的圓相切,切點(diǎn)分別為P、Q,PQ交y軸于點(diǎn)K,拋物線經(jīng)過P、Q兩點(diǎn),頂點(diǎn)為N(0,6),且與x軸交于A、B兩點(diǎn).
(1)求點(diǎn)P的坐標(biāo);
(2)求拋物線解析式;
(3)在直線y=nx+m中,當(dāng)n=0,m≠0時(shí),y=m是平行于x軸的直線,設(shè)直線y=m與拋物線相交于點(diǎn)C、D,當(dāng)該直線與⊙M相切時(shí),求點(diǎn)A、B、C、D圍成的多邊形的面積(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C、D在⊙O上,且AC平分∠BAD,點(diǎn)E為AB的延長線上一點(diǎn),且∠ECB=∠CAD.

(1)填空:∠ACB= ,理由是
(2)求證:CE與⊙O相切
(3)若AB=6,CE=4,求AD的長

查看答案和解析>>

同步練習(xí)冊答案