【題目】如圖,在平行四邊形ABCD中,對角線AC、BD交于點O,BD=6cm,AD=8cm,AB=10cm,點E從點B出發(fā),沿BA方向勻速運動,速度為1cm/s;同時,點G從點C出發(fā),沿CB方向勻速運動,速度為2cm/s;當(dāng)一個點停止運動時,另一個點也停止運動.連接OE,過點G作GF∥BD,設(shè)運動時間為t(s)(0<t<4),解答下列問題:
(1)當(dāng)t為何值時,△BOE是等腰三角形?
(2)設(shè)五邊形OEBGF面積為S,試確定S與t的函數(shù)關(guān)系式;
(3)在運動過程中,是否存在某一時刻t,使S五邊形OEBGF:S△ACD=19:40?若存在,求出t的值;若不存在,請說明理由;
(4)在運動過程中,是否存在某一時刻t,使得OB平分∠COE,若存在,求出t的值;若不存在,請說明理由.
【答案】(1)t為3或或秒;(2)S五邊形BEOFG=﹣t+12;(3)2秒;(4)存在t為秒時,使OB平分∠COE
【解析】
(1)證出△ADB為直角三角形,且∠ADB=90°,分以下三種情況討論,①當(dāng)BO=BE時,可得出t=3,②當(dāng)BO=EO時,如圖1,過點O作OH⊥BE于點H,證明△BOH∽△BAD,可得出答案;③當(dāng)BE=OE,如圖2,過點E作EK⊥OB于點K,證明△BEK∽△BAD,由比例線段可得出答案;
(2)證明△CFG∽△COB,求出S△CFG=,根據(jù)S五邊形BEOFG=S△BOE+S四邊形BOFG可得出答案;
(3)由(2)的結(jié)論可得出t的方程,解方程即可得解;
(4)證明△EOK∽△COB,可得出,則可得解.
(1)在△ADB中,
∵AD2+BD2=82+62=100=AB2,
∴△ADB為直角三角形,且∠ADB=90°,
若△BOE為等腰三角形,分以下三種情況討論,
①當(dāng)BO=BE時,
t=3,
②當(dāng)BO=EO時,如圖1,過點O作OH⊥BE于點H,
∵∠ABD=∠ABD,∠OHB=∠ADB=90°,
∴△BOH∽△BAD,
∴,
即,
則BH=,OH=,
∵OE=OB,OH⊥BE,
∴BH=BE,
即,
∴t=,
③當(dāng)BE=OE,如圖2,
過點E作EK⊥OB于點K,
∵∠ABD=∠ABD,∠BKE=∠ADB=90°,
∴△BEK∽△BAD,
∴,
即,
∴BK=t,EK=t,
∵OE=EB,EK⊥BO,
∴BK=BO,
即,
∴t=,
答:當(dāng)t為3或或秒時,△BOE是等腰三角形;
(2)∵GF∥BD,
∴∠CFG=∠COB,∠CGF=∠CBO,
∴△CFG∽△COB,
∴,
∴S△CFG=,
∴S四邊形BOFG=S△BOC﹣S△CFG=12﹣,
∵S△BOE=BE×OH=,
∴S五邊形BEOFG=S△BOE+S四邊形BOFG=12﹣=﹣t+12,
(3)若S五邊形OEBGF:S△ACD=19:40,
∴,
整理得:5t2﹣8t﹣4=0,
解得:t1=(舍去),t2=2.
答:存在t為2秒時,使S五邊形OEBGF:S△ACD=19:40;
(4)若OB平分∠COE,
則∠BOE=∠BOC,∠EKO=∠CBO=90°,
∴△EOK∽△COB,
∴,
∴,
解得:t=.
答:存在t為秒時,使OB平分∠COE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器商場銷售每臺進價分別為200元、170元的A、B兩種型號的電風(fēng)扇,下表是該型號電風(fēng)扇近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 1800元 |
第二周 | 4臺 | 10臺 | 3100元 |
求A、B兩種型號的電風(fēng)扇的銷售單價;
若該商場準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,假設(shè)售價不變,那么商場應(yīng)采用哪種采購方案,才能使得當(dāng)銷售完這些風(fēng)扇后,商場獲利最多?最多可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀理解)
借助圖形的直觀性,我們可以直接得到一些有規(guī)律的算式的結(jié)果,比如:由圖①,通過對小黑點的計數(shù),我們可以得到1+2+3+…+n=n(n+1);由圖②,通過對小圓圈的計數(shù),我們可以得到1+3+5+…+(2n﹣1)=n2.
那么13+23+33+…+n3結(jié)果等于多少呢?
如圖③,AB是正方形ABCD的一邊,BB′=n,B′B″=n﹣1,B″B′′′=n﹣2,……,顯然AB=1+2+3+…+n= n(n+1),分別以AB′、AB″、AB′′′、…為邊作正方形,將正方形ABCD分割成塊,面積分別記為Sn、Sn﹣1、Sn﹣2、…、S1.
(規(guī)律探究)
結(jié)合圖形,可以得到Sn=2BB′×BC﹣BB′2= ,
同理有Sn﹣1= ,Sn﹣2= ,…,S1=13.
所以13+23+33+…+n3=S四邊形ABCD= .
(解決問題)
根據(jù)以上發(fā)現(xiàn),計算的結(jié)果為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟社會的發(fā)展,人民對于美好生活的追求越來越高.某社區(qū)為了了解家庭對于文化教育的消費悄況,隨機抽取部分家庭,對每戶家庭的文化教育年消費金額進行問卷調(diào)査,根據(jù)調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖表.
請你根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:
組別 | 家庭年文化教育消費金額x(元) | 戶數(shù) |
A | x≤5000 | 36 |
B | 5000<x≤10000 | m |
C | 10000<x≤15000 | 27 |
D | 15000<x≤20000 | 15 |
E | x>20000 | 30 |
(1)本次被調(diào)査的家庭有__________戶,表中 m=__________;
(2)本次調(diào)查數(shù)據(jù)的中位數(shù)出現(xiàn)在__________組.扇形統(tǒng)計圖中,D組所在扇形的圓心角是__________度;
(3)這個社區(qū)有2500戶家庭,請你估計家庭年文化教育消費10000元以上的家庭有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,點E在AD邊上,連接BE、CE,EB平分∠AEC .
(1)如圖1,判斷△BCE的形狀,并說明理由;
(2)如圖2,若∠A=90°,BC=5,AE=1,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、點D為⊙O上兩點,線段BC切⊙O于點B,點D在BC的垂直平分線上,CD∥OA,sin∠BCD=,OA=2BD,若BC=,則⊙O的半徑為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在新冠狀病毒的影響下,某學(xué)校積極響應(yīng)政府號召,開展了“停課不停學(xué)”網(wǎng)上授課工作,為了網(wǎng)上授課工作順利開展和取得良好成效,該校在授課第一周和授課第二周分別隨機抽取部分學(xué)生進行“網(wǎng)上授課教學(xué)效果反饋”網(wǎng)上調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,調(diào)查顯示:兩次調(diào)查反饋教學(xué)效果為“較差”人數(shù)相等,第二周反饋教學(xué)效果為“很好”人數(shù)比例比第一周多,請根據(jù)調(diào)查顯示和統(tǒng)計圖中的信息解決下列問題:
在圖1中,表示“較好”的扇形圓心角的度數(shù)為_ 度,并把圖2條形統(tǒng)計圖補充完整;
若把調(diào)查反饋教學(xué)效果“很好”和“較好”作為網(wǎng)上授課成效良好的標(biāo)準(zhǔn),該校大約有名學(xué)生,請估計授課第二周學(xué)校網(wǎng)上授課成效良好的學(xué)生人數(shù);
有一位家長認(rèn)為,兩次調(diào)查反饋授課效果為“較差”人數(shù)相等,因此學(xué)校在一周后調(diào)整的措施并沒有提高網(wǎng)上授課效果,這位家長分析數(shù)據(jù)的方法合理嗎?請結(jié)合統(tǒng)計圖,對這位家長分析數(shù)據(jù)的方法及學(xué)校在一周后調(diào)整措施對網(wǎng)上授課效果的影響談?wù)勀愕目捶ǎ?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,邊AB是半圓O的直徑,點E是CD的中點,BE交半圓O于點F,連接DF.
(1)求證:DF是半圓O的切線;
(2)若AB =8,AD =3,求BF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com