【題目】如圖所示,點(diǎn)O是等邊三角形ABC內(nèi)一點(diǎn),∠AOB=100°,∠BOC=, D是△ABC外一點(diǎn),且△ADC ≌△BOC,連接OD.
(1)求證:△COD是等邊三角形;
(2)當(dāng)=150°時(shí),請(qǐng)計(jì)算△AOD三內(nèi)角的度數(shù),并判斷△AOD的形狀;
(3)探究:當(dāng)為多少度時(shí),△AOD是等腰三角形?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒4cm的速度沿折線A-C-B-A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)若點(diǎn)P在AC上,且滿足PA=PB時(shí),求出此時(shí)t的值;
(2)若點(diǎn)P恰好在∠BAC的角平分線上,求t的值;
(3)在運(yùn)動(dòng)過程中,直接寫出當(dāng)t為何值時(shí),△BCP為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
第1個(gè)等式:a1= = ﹣1,
第2個(gè)等式:a2= = ﹣ ,
第3個(gè)等式:a3= =2﹣ ,
第4個(gè)等式:a4= = ﹣2,
按上述規(guī)律,回答以下問題:
(1)請(qǐng)寫出第n個(gè)等式:an=;
(2)a1+a2+a3+…+an= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從①∠1=∠2 ②∠C=∠D ③∠A=∠F 三個(gè)條件中選出兩個(gè)作為已知條件,另一個(gè)作為結(jié)論所組成的命題中,正確命題的個(gè)數(shù)為( 。
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=kx+b與拋物線y= x2交于A(x1 , y1)、B(x2 , y2)兩點(diǎn),當(dāng)OA⊥OB時(shí),直線AB恒過一個(gè)定點(diǎn),該定點(diǎn)坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某學(xué)校初四年紀(jì)學(xué)生每周平均課外閱讀時(shí)間的情況,隨機(jī)抽查了該學(xué)校初四年級(jí)m名同學(xué),對(duì)其每周平均課外閱讀時(shí)間進(jìn)行統(tǒng)計(jì),繪制了如下條形統(tǒng)計(jì)圖(圖一)和扇形統(tǒng)計(jì)圖(圖二):
(1)根據(jù)以上信息回答下列問題:
①求m值.
②求扇形統(tǒng)計(jì)圖中閱讀時(shí)間為5小時(shí)的扇形圓心角的度數(shù).
③補(bǔ)全條形統(tǒng)計(jì)圖.
(2)直接寫出這組數(shù)據(jù)的眾數(shù)、中位數(shù),求出這組數(shù)據(jù)的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用n邊形的對(duì)角線把n邊形分割成(n-2)個(gè)三角形,共有多少種不同的分割方案(n≥4)?
(探究)為了解決上面的數(shù)學(xué)問題,我們采取一般問題特殊化的策略,先從最簡單情形入手,再逐次遞進(jìn)轉(zhuǎn)化,最后猜想得出結(jié)論.不妨假設(shè)n邊形的分割方案有Pn種.
探究一:用四邊形的對(duì)角線把四邊形分割成2個(gè)三角形,共有多少種不同的分割方案?
如圖①,圖②,顯然,只有2種不同的分割方案.所以,P4=2.
探究二:用五邊形的對(duì)角線把五邊形分割成3個(gè)三角形,共有多少種不同的分割方案?
不妨把分割方案分成三類:
第1類:如圖③,用A,E與B連接,先把五邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)四邊形,再把四邊形分割成2個(gè)三角形,由探究一知,有P4種不同的分割方案,所以,此類共有P4種不同的分割方案.
第2類:如圖④,用A,E與C連接,把五邊形分割成3個(gè)三角形,有1種不同的分割方案,可視為種分割方案.
第3類:圖⑤,用A,E與D連接,先把五邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)四邊形,再把四邊形分割成2個(gè)三角形,由探究一知,有P4種不同的分割方案,所以,此類共有P4種不同的分割方案.
所以,P5 =++=(種)
探究三:用六邊形的對(duì)角線把六邊形分割成4個(gè)三角形,共有多少種不同的分割方案?
不妨把分割方案分成四類:
第1類:如圖⑥,用A,F(xiàn)與B連接,先把六邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)五邊形,再把五邊形分割成3個(gè)三角形,由探究二知,有P5種不同的分割方案.所以,此類共有P5種不同的分割方案.
第2類:如圖⑦,用A,F(xiàn)與C連接,先把六邊形分割轉(zhuǎn)化成2個(gè)三角形和1個(gè)四邊形.再把四邊形分割成2個(gè)三角形,由探究一知,有P4種不同的分割方案.所以,此類共有P4種分割方案
第3類:如圖⑧,用A,F(xiàn)與D連接,先把六邊形分割轉(zhuǎn)化成2個(gè)三角形和1個(gè)四邊形.再把四邊形分割成2個(gè)三角形,由探究一知,有P4種不同的分割方案.所以,此類共有P4種分割方案.
第4類:如圖⑨,用A,F(xiàn)與E連接,先把六邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)五邊形.再把五邊形分割成3個(gè)三角形,由探究二知,有P5種不同的分割方案.所以,此類共有P5種分割方案.
所以,P6 =(種)
探究四:用七邊形的對(duì)角線把七邊形分割成5個(gè)三角形,則P7與P6的關(guān)系為:
P7 = ,共有_____種不同的分割方案.……
(結(jié)論)用n邊形的對(duì)角線把n邊形分割成(n-2)個(gè)三角形,共有多少種不同的分割方案(n≥4)?(直接寫出Pn與Pn -1的關(guān)系式,不寫解答過程).
(應(yīng)用)用八邊形的對(duì)角線把八邊形分割成6個(gè)三角形,共有多少種不同的分割方案? (應(yīng)用上述結(jié)論,寫出解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小東在教學(xué)樓距地面9米高的窗口C處,測得正前方旗桿頂部A點(diǎn)的仰角為37°,旗桿底部B點(diǎn)的俯角為45°,升旗時(shí),國旗上端懸掛在距地面2.25米處,若國旗隨國歌聲冉冉升起,并在國歌播放45秒結(jié)束時(shí)到達(dá)旗桿頂端,則國旗應(yīng)以多少米/秒的速度勻速上升?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD是角平分線,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB為半徑的圓經(jīng)過點(diǎn)D,交BC于點(diǎn)E.
(1)求證:AC是⊙O的切線;
(2)若OB=10,CD=8,求BE的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com