【題目】某校九年級(jí)數(shù)學(xué)模擬測(cè)試中,六名學(xué)生的數(shù)學(xué)成績(jī)?nèi)缦卤硭,下列關(guān)于這組數(shù)據(jù)描述正確的是( 。
姓名 | 小紅 | 小明 | 小東 | 小亮 | 小麗 | 小華 |
成績(jī)(分) | 110 | 106 | 109 | 111 | 108 | 110 |
A.眾數(shù)是110B.方差是16
C.平均數(shù)是109.5D.中位數(shù)是109
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是上的四個(gè)點(diǎn),連接交于點(diǎn),過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),延長(zhǎng)交直線于點(diǎn)
(1)判斷四邊形的形狀并說(shuō)明理由;
(2)求證:是的切線:
(3)若求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加強(qiáng)學(xué)生身體鍛煉,某校開(kāi)展體育“大課間”活動(dòng),學(xué)校決定在學(xué)生中開(kāi)設(shè)A:籃球,B:立定跳遠(yuǎn),C:跳繩,D:跑步,E:排球五種活動(dòng)項(xiàng)目.為了了解學(xué)生對(duì)五種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的兩個(gè)統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:
(1)在這項(xiàng)調(diào)查中,共調(diào)查了_______名學(xué)生;
(2)請(qǐng)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校有1200名在校學(xué)生,請(qǐng)估計(jì)喜歡排球的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,點(diǎn)D、E分別是AB、BC的中點(diǎn),過(guò)點(diǎn)C作CF∥AB,與DE的延長(zhǎng)線并交于點(diǎn)F,連接BF.
(1)試判斷四邊形CDBF的形狀,并說(shuō)明理由;
(2)若CD=5,sin∠CAB=,過(guò)點(diǎn)C作CH⊥BF,垂足為H點(diǎn),試求CH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市衛(wèi)生局為了了解該市社區(qū)醫(yī)院對(duì)患者隨訪情況,隨機(jī)抽查了部分社區(qū)醫(yī)院一年來(lái)對(duì)患者隨訪的次數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計(jì)圖,下面給出了兩幅不完整的統(tǒng)計(jì)圖:
請(qǐng)根據(jù)圖中提供的信息,回答下列問(wèn)題:
(1)該市衛(wèi)生局共抽查了社區(qū)醫(yī)院的患者多少人?并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)請(qǐng)直接寫出在這次抽樣調(diào)查中的眾數(shù)是 ,中位數(shù)是 ;
(3)如果該市社區(qū)醫(yī)院患者有60000人,請(qǐng)你估計(jì)“隨訪的次數(shù)不少于7次”社區(qū)醫(yī)院的患者有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分10分)(1)如圖1,在△ABC中,點(diǎn)D,E,Q分別在AB,AC,BC上,且DE∥BC,AQ交DE于點(diǎn)P.求證:.
(2)如圖,在△ABC中,∠BAC=90°,正方形DEFG的四個(gè)頂點(diǎn)在△ABC的邊上,連接AG,AF分別交DE于M,N兩點(diǎn).
①如圖2,若AB=AC=1,直接寫出MN的長(zhǎng);
②如圖3,求證MN2=DM·EN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們把有一組對(duì)角為直角的四邊形叫直方形.設(shè)這兩個(gè)直角的夾邊長(zhǎng)分別為a,b和c,d,記叫直方形的方周長(zhǎng),如圖1.
(1)判斷與的大小;
(2)如圖2,已知點(diǎn)P為雙曲線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PA⊥x軸交x軸正半軸于點(diǎn)A,以坐標(biāo)原點(diǎn)O為圓心、OA長(zhǎng)為半徑作,點(diǎn)B為上不同于點(diǎn)A的點(diǎn),當(dāng)以點(diǎn)P,A,O,B為頂點(diǎn)的直方形的方周長(zhǎng)取最小值時(shí),求直方形PAOB的面積;
(3)已知直線:與x軸、y軸相交于點(diǎn)A,B,點(diǎn)P為平面上一點(diǎn),以點(diǎn)P,A,O,B為頂點(diǎn)的直方形的方周長(zhǎng),當(dāng)反比例函數(shù)的圖象與直線有兩個(gè)交點(diǎn)時(shí),求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)閱讀以下材料,并完成相應(yīng)任務(wù):
斐波那契(約1170-1250)是意大利數(shù)學(xué)家.1202年,撰寫了《算盤書》一書,他是第一個(gè)研究了印度和阿拉伯?dāng)?shù)學(xué)理論的歐洲人,他還曾在埃及、敘利亞、希臘,以及意大利西西里和法國(guó)普羅旺斯等地研究數(shù)學(xué).他研究了一列非常奇妙的數(shù):0,1,1,2,3,5,8,13,21,34,55,89,144……這列數(shù),被稱為斐波那契數(shù)列.其特點(diǎn)是從第3項(xiàng)開(kāi)始,每一項(xiàng)都等于前兩項(xiàng)之和,斐波那契數(shù)列還有很多有趣的性質(zhì),在實(shí)際生活中也有廣泛的應(yīng)用.
任務(wù):(1)填寫下表并寫出通過(guò)填表你發(fā)現(xiàn)的規(guī)律:
項(xiàng) | 第2項(xiàng) | 第3項(xiàng) | 第4項(xiàng) | 第5項(xiàng) | 第6項(xiàng) | 第7項(xiàng) | 第8項(xiàng) | 第9項(xiàng) | … |
這一項(xiàng)的平方 | 1 | 1 | 4 | 9 | 25 | ________ | _______ | 441 | … |
這一項(xiàng)的前、后兩項(xiàng)的積 | 0 | 2 | 3 | 10 | 24 | _______ | _______ | 442 | … |
規(guī)律:_____________;
(2)現(xiàn)有長(zhǎng)為的鐵絲,要截成小段,每段的長(zhǎng)度不小于,如果其中任意三小段都不能拼成三角形,則的最大值為___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=4cm,點(diǎn)E、F同時(shí)從C點(diǎn)出發(fā),以1cm/s的速度分別沿CB﹣BA、CD﹣DA運(yùn)動(dòng),到點(diǎn)A時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s),△AEF的面積為S(cm2),則S(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com