【題目】如圖,△ABC中,∠B=60,∠ACB=75,點(diǎn)D是BC邊上一動(dòng)點(diǎn),以AD為直徑作⊙O,分別交AB、AC于E、F,若弦EF的最小值為1,則AB的長為
A. | B. | C.1.5 | D. |
【答案】B
【解析】
首先連接OE,OF,過O點(diǎn)作OH⊥EF,垂足為H,可求得半徑OE的長,又由當(dāng)AD為△ABC的邊BC上的高時(shí),AD最大時(shí)為直徑,OE最大,OH最大,EF最小,可求得AD的長,由三角函數(shù)的性質(zhì),即可求得AB的長.
解:如圖,連接OE,OF,過O點(diǎn)作OH⊥EF,垂足為H,
∴EH=FH=EF=×1=,
∵在△ADB中,∠B=60°,∠ACB=75°,
∴∠BAC=45°,
∴∠EOF=2∠BAC=90°,
∵OE=OF,
∴∠EOH=∠EOF=45°,
∴OE= =,
∵當(dāng)AD為△ABC的邊BC上的高時(shí),AD最大時(shí)為直徑,OE最大,OH最大,EF最小,
∴AD=2OE=,
∴AB==
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖.在△ABC中.AB=AC=5cm,BC=6cm.點(diǎn)P由B出發(fā),沿BC方向勻速運(yùn)動(dòng).速度為1cm/s.同時(shí),點(diǎn)Q從點(diǎn)A出發(fā),沿AC方向勻速運(yùn)動(dòng).速度為1cm/s,過點(diǎn)P作PMBC交AB于點(diǎn)M,過點(diǎn)Q作QNBC,垂足為點(diǎn)N,連接MQ,若設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<3),解答下列問題:
(1)當(dāng)t為何值時(shí),點(diǎn)M是邊AB中點(diǎn)?
(2)設(shè)四邊形PNQM的面積為y(cm2),求出y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使S四邊形PNQM:S△ABC=4:9?若存在,求出此時(shí)t的值;若不存在,說明理由;
(4)是否存在某一時(shí)刻t,使四邊形PNQM為正方形?若存在,求出此時(shí)t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O是∠ABC和∠ACB兩個(gè)內(nèi)角平分線的交點(diǎn),過點(diǎn)O作EF∥BC分別交AB,AC于點(diǎn)E,F,已知△ABC的周長為8,BC=x,△AEF的周長為y,則表示y與x的函數(shù)圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐:矩形的旋轉(zhuǎn)
問題情境:
在綜合與實(shí)踐課上,老師讓同學(xué)們以“矩形的旋轉(zhuǎn)”為主題開展數(shù)學(xué)活動(dòng).具體要求:如圖1,將長與寬都相等的兩個(gè)矩形紙片ABCD和EFGH疊放在一起,這時(shí)對角線AC和EG互相重合.固定矩形ABCD,將矩形EFGH繞AC的中點(diǎn)O逆時(shí)針方向旋轉(zhuǎn),直到點(diǎn)E與點(diǎn)B重合時(shí)停止,在此過程中開展探究活動(dòng).
操作發(fā)現(xiàn):
(1)雄鷹小組初步發(fā)現(xiàn):在旋轉(zhuǎn)過程中,當(dāng)邊AB與EF交于點(diǎn)M,邊CD與GH交于點(diǎn)N,如圖2、圖3所示,則線段AM與CN始終存在的數(shù)量關(guān)系是 .
(2)雄鷹小組繼續(xù)探究發(fā)現(xiàn):在旋轉(zhuǎn)開始后,當(dāng)兩個(gè)矩形紙片重疊部分為四邊形QMRN時(shí),如圖3所示,四邊形QMRN為菱形,請你證明這個(gè)結(jié)論.
(3)雄鷹小組還發(fā)現(xiàn)在問題(2)中的四邊形QMRN中∠MQN與旋轉(zhuǎn)角∠AOE存在著特定的數(shù)量關(guān)系,請你寫出這一關(guān)系,并說明理由.
實(shí)踐探究:
(4)在圖3中,隨著矩形紙片EFGH的旋轉(zhuǎn),四邊形QMRN的面積會(huì)發(fā)生變化.若矩形紙片的長為,寬為,請你幫助雄鷹小組探究當(dāng)旋轉(zhuǎn)角∠AOE為多少度時(shí),四邊形QMRN的面積最大?最大面積是多少?(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的解析式是y=x2﹣2x﹣3.
(1)與y軸的交點(diǎn)坐標(biāo)是 ,頂點(diǎn)坐標(biāo)是 .
(2)在坐標(biāo)系中利用描點(diǎn)法畫出此拋物線;
x | … | … | |||||
y | … | … |
(3)結(jié)合圖象回答:當(dāng)﹣2<x<2時(shí),函數(shù)值y的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,水平地面上有一幢高為AD的樓,樓前有坡角為30°、長為6米的斜坡.已知從A點(diǎn)觀測B、C的俯角分別為60°和30°
(1)求樓高;
(2)現(xiàn)在要將一個(gè)半徑為2米的⊙O從坡底與斜坡相切時(shí)的⊙O1位置牽引滾動(dòng)到斜坡上至圓剛好與斜坡上水平面相切時(shí)的⊙O2位置,求滾動(dòng)過程中圓心O移動(dòng)的總長度.(參考數(shù)據(jù):tan15°=2﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線.交BC于點(diǎn)E.
(1)求證:BE=EC
(2)填空:①若∠B=30°,AC=2,則DB= ;
②當(dāng)∠B= 度時(shí),以O,D,E,C為頂點(diǎn)的四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于A、B兩點(diǎn),與y軸交于C(0,3),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0).點(diǎn)P是拋物線上一個(gè)動(dòng)點(diǎn),且在直線BC的上方.
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形 ABPC的面積最大,并求出此時(shí)點(diǎn)P的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=8,OC=4,OA、OC分別在x軸與y軸上,D為OA上一點(diǎn),且CD=AD.
(1)求點(diǎn)D的坐標(biāo);
(2)若經(jīng)過B、C、D三點(diǎn)的拋物線與x軸的另一個(gè)交點(diǎn)為E,請直接寫出點(diǎn)E的坐標(biāo);
(3)在(2)中的拋物線上位于x軸上方的部分,是否存在一點(diǎn)P,使△PBC的面積等于梯形DCBE的面積?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com