【題目】如圖,在△ABC,ABBC,∠ABC90°,BMAC邊中線點(diǎn)D,E分別在邊ACBCDBDE,EFAC于點(diǎn)F,以下結(jié)論:①△BMD≌△DFE;②△NBE∽△DBC;③AC2DF;④EFABCFBC,其中正確結(jié)論的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

根據(jù)全等三角形的判定和性質(zhì)及相似三角形的判定和性質(zhì)即可.

解:∵AB=BC∠ABC=90°,BMAC邊中線,

∠MBC=∠C =45°,BM=AM=MC

DBDE,

∠DBE∠DEB

∠DBM+45°=∠CDE+45°.

∠DBM∠CDE.

EFAC,

∠DFE=∠BMD=90°

△BMD△DFE

△BMD△DFE.

故①正確.

由① 可得∠DBE∠DEB,∠MBC∠C

△NBE△DCB

故②錯(cuò),對(duì)應(yīng)字母沒(méi)有寫(xiě)在對(duì)應(yīng)的位置上.

△BMD△DFE,

BM=DF,

BM=AM=MC,

AC=2BM,

AC=2DF.

故③正確

易證△EFC△ABC,所以=,

EFAB=CFBC

故④正確

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B分別在x軸、y軸上(OA>OB),以AB為直徑的圓經(jīng)過(guò)原點(diǎn)O,C是的中點(diǎn),連結(jié)AC,BC.下列結(jié)論:①AC=BC;②若OA=4,OB=2,則△ABC的面積等于5;③若OA﹣OB=4,則點(diǎn)C的坐標(biāo)是(2,﹣2).其中正確的結(jié)論有(

A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,ABC=30°,AC=2cm.現(xiàn)在將ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)至A′B′C′,使得點(diǎn)A′恰好落在AB上,連接BB′,則BB′的長(zhǎng)度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在課堂上,老師將除顏色外都相同的1個(gè)黑球和若干個(gè)白球放入一個(gè)不透明的口袋并攪勻,讓全班同學(xué)依次進(jìn)行摸球試驗(yàn),每次隨機(jī)摸出一個(gè)球,記下顏色再放回?cái)噭,下表是試?yàn)得到的一組數(shù)據(jù).

摸球的次數(shù)n

100

150

200

500

800

摸到黑球的次數(shù)m

26

37

49

124

200

摸到黑球的頻率

a

表中a的值等于______;

估算口袋中白球的個(gè)數(shù);

用畫(huà)樹(shù)狀圖或列表的方法計(jì)算連續(xù)兩名同學(xué)都摸出白球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形,在上取兩點(diǎn)左邊),以為邊作等邊三角形,使頂點(diǎn)上.

(1)PEF的邊長(zhǎng);

(2)PEF的邊在線段上移動(dòng).分別交于點(diǎn)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】Ⅰ)已知方程①

請(qǐng)判斷這兩個(gè)方程是否有解?并說(shuō)明理由;

Ⅱ)已知 ,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ACB=90°,E為BC上一點(diǎn),以CE為直徑作O,AB與O相切于點(diǎn)D,連接CD,若BE=OE=2.

(1)求證:A=2DCB;

(2)求圖中陰影部分的面積(結(jié)果保留π和根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn)坐標(biāo)為M(1,4),且經(jīng)過(guò)點(diǎn)N(2,3),與x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C、設(shè)直線CMx軸交于點(diǎn)D

(1)求拋物線的解析式.

(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使以點(diǎn)P為圓心的圓經(jīng)過(guò)AB兩點(diǎn),且與直線CD相切?若存在,求出P的坐標(biāo);若不存在.請(qǐng)說(shuō)明理由.

(3)設(shè)直線ykx+2與拋物線交于Q、R兩點(diǎn),若原點(diǎn)O在以QR為直徑的圓外,請(qǐng)直接寫(xiě)出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘海輪位于燈塔P的南偏東60方向,距離燈塔100海里的A處,它計(jì)劃去往位于燈塔P的北偏東45方向上的B.(參考數(shù)據(jù)≈1.414, ≈1.732, ≈2.449

1)問(wèn)B處距離燈塔P有多遠(yuǎn)?(結(jié)果精確到0.1海里)

2)假設(shè)有一圓形暗礁區(qū)域,它的圓心位于射線PB上,距離燈塔190海里的點(diǎn)O.圓形暗礁區(qū)域的半徑為50海里,進(jìn)入這個(gè)區(qū)域,就有觸礁的危險(xiǎn).請(qǐng)判斷海輪到達(dá)B處是否有觸礁的危險(xiǎn),并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案