【題目】45°角的直角三角板如圖放置在平面直角坐標(biāo)系中,其中A(-3,0),B02),則直線BC的解析式為______

【答案】y=-x+2

【解析】

過(guò)CCDx軸于點(diǎn)D,則可證得△AOB≌△CDA,可求得CDOD的長(zhǎng),可求得C點(diǎn)坐標(biāo),利用待定系數(shù)法可求得直線BC的解析式.

解:如圖,過(guò)CCDx軸于點(diǎn)D,

∵∠CAB=90°,

∴∠DAC+∠BAO=∠BAO+∠ABO=90°,

∴∠DAC=∠ABO,

在△AOB和△CDA

,

∴△AOB≌△CDAAAS),

A(-30),B0,2),

AD=BO=2CD=AO=3,

C(-5,3),

設(shè)直線BC解析式為y=kx+b,

,解得,

∴直線BC解析式為y=-x+2

故答案為:y=-x+2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題發(fā)現(xiàn))

(1)如圖(1)四邊形ABCD中,若AB=ADCB=CD,則線段BD,AC的位置關(guān)系為   ;

(拓展探究)

(2)如圖(2)在RtABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以ABAC為底邊,在RtABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,FE,分別交AB,AC于點(diǎn)MN.試猜想四邊形FMAN的形狀,并說(shuō)明理由;

(解決問(wèn)題)

(3)如圖(3)在正方形ABCD中,AB=2,以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請(qǐng)直接寫(xiě)出BD'平方的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,于點(diǎn),的角平分線相交于點(diǎn),為邊的中點(diǎn),,則

A.125°B.145°C.175°D.190°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,AB5cm,BC13cm,點(diǎn)D在線段AC上,且CD7cm,動(dòng)點(diǎn)P從距B點(diǎn)15cmE點(diǎn)出發(fā),以每秒2cm的速度沿射線EA的方向運(yùn)動(dòng),時(shí)間為t秒.

1)求AD的長(zhǎng).

2)用含有t的代數(shù)式表示AP的長(zhǎng).

3)在運(yùn)動(dòng)過(guò)程中,是否存在某個(gè)時(shí)刻,使△ABC與△ADP全等?若存在,請(qǐng)求出t值;若不存在,請(qǐng)說(shuō)明理由.

4)直接寫(xiě)出t______秒時(shí),△PBC為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠B90°,AC60cm,∠A60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/s的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/s的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D,E運(yùn)動(dòng)的時(shí)間是ts0t≤15).過(guò)點(diǎn)DDFBC于點(diǎn)F,連接DE,EF

1)求證:四邊形AEFD是平行四邊形;

2)當(dāng)t為何值時(shí),DEF為直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,四邊形ABCD是平行四邊形.

(1)用直尺和圓規(guī)在BC、AD上分別求作點(diǎn)E,F(xiàn)使AECF為菱形(不要求寫(xiě)作法,保留作圖痕跡);

(2)求證:AECF為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,過(guò)點(diǎn)O的直線分別交邊AB、CD、AD、BC于點(diǎn)E、F、G、H

(感知)如圖①,若四邊形ABCD是正方形,且EFGH,易知SBOE=SAOG,又因?yàn)?/span>SAOB=S四邊形ABCD,所以S四邊形AEOG=S正方形ABCD(不要求證明);

(拓展)如圖②,若四邊形ABCD是矩形,且S四邊形AEOG=S矩形ABCD,若AB=a,AD=b,BE=m,求AG的長(zhǎng)(用含a、bm的代數(shù)式表示);

(探究)如圖③,若四邊形ABCD是平行四邊形,且S四邊形AEOG=SABCD,若AB=3,AD=5BE=1,則AG=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形紙片ABCDAB=4,BC=3,點(diǎn)PBC邊上,將△CDP沿DP折疊,點(diǎn)C落在點(diǎn)E處,PE.、DE分別交AB于點(diǎn)O、F,且OP=OF,則BP的長(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一個(gè)單位面積為1的方格紙上,A1A2A3,A3A4A5A5A6A7,……是斜邊在x軸上,且斜邊長(zhǎng)分別為2,46,……的等腰直角三角形.若A1A2A3的頂點(diǎn)坐標(biāo)分別為A12,0),A21-1),A30,0),則依圖中所示規(guī)律,點(diǎn)A2019的橫坐標(biāo)為( 。

A. 1010B. C. 1008D.

查看答案和解析>>

同步練習(xí)冊(cè)答案