【題目】(問題發(fā)現(xiàn))
(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為 ;
(拓展探究)
(2)如圖(2)在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,FE,分別交AB,AC于點(diǎn)M,N.試猜想四邊形FMAN的形狀,并說明理由;
(解決問題)
(3)如圖(3)在正方形ABCD中,AB=2,以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請直接寫出BD'平方的值.
【答案】(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8
【解析】
(1)依據(jù)點(diǎn)A在線段BD的垂直平分線上,點(diǎn)C在線段BD的垂直平分線上,即可得出AC垂直平分BD;
(2)根據(jù)Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),可得AF=CF=BF,再根據(jù)等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,進(jìn)而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;
(3)分兩種情況:①以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD逆時(shí)針旋轉(zhuǎn)60°,②以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD順時(shí)針旋轉(zhuǎn)60°,分別依據(jù)旋轉(zhuǎn)的性質(zhì)以及勾股定理,即可得到結(jié)論.
(1)∵AB=AD,CB=CD,
∴點(diǎn)A在線段BD的垂直平分線上,點(diǎn)C在線段BD的垂直平分線上,
∴AC垂直平分BD,
故答案為:AC垂直平分BD;
(2)四邊形FMAN是矩形.理由:
如圖2,連接AF,
∵Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),
∴AF=CF=BF,
又∵等腰三角形ABD 和等腰三角形ACE,
∴AD=DB,AE=CE,
∴由(1)可得,DF⊥AB,EF⊥AC,
又∵∠BAC=90°,
∴∠AMF=∠MAN=∠ANF=90°,
∴四邊形AMFN是矩形;
(3)BD′的平方為16+8或16﹣8.
分兩種情況:
①以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD逆時(shí)針旋轉(zhuǎn)60°,
如圖所示:過D'作D'E⊥AB,交BA的延長線于E,
由旋轉(zhuǎn)可得,∠DAD'=60°,
∴∠EAD'=30°,
∵AB=2=AD',
∴D'E=AD'=,AE=,
∴BE=2+,
∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8
②以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD順時(shí)針旋轉(zhuǎn)60°,
如圖所示:過B作BF⊥AD'于F,
旋轉(zhuǎn)可得,∠DAD'=60°,
∴∠BAD'=30°,
∵AB=2=AD',
∴BF=AB=,AF=,
∴D'F=2﹣,
∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8
綜上所述,BD′平方的長度為16+8或16﹣8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃一次性購買排球和籃球,每個(gè)籃球的價(jià)格比排球貴30元;購買2個(gè)排球和3個(gè)籃球共需340元.
(1)求每個(gè)排球和籃球的價(jià)格:
(2)若該校一次性購買排球和籃球共60個(gè),總費(fèi)用不超過3800元,且購買排球的個(gè)數(shù)少于39個(gè).設(shè)排球的個(gè)數(shù)為m,總費(fèi)用為y元.
①求y關(guān)于m的函數(shù)關(guān)系式,并求m可取的所有值;
②在學(xué)校按怎樣的方案購買時(shí),費(fèi)用最低?最低費(fèi)用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲乙兩人以相同的路線前往距離單位的培訓(xùn)中心參加學(xué)習(xí),圖中,分別表示甲乙兩人前往目的地所走的路程(千米)隨時(shí)間(分)變化的函數(shù)圖象,以下說法:
①乙比甲提前12分鐘到達(dá)
②甲平均速度為0.25千米/小時(shí)
③甲、乙相遇時(shí),乙走了6千米
④乙出發(fā)6分鐘后追上甲,其中正確的是( )
A.①②B.③④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx﹣2與x軸交于點(diǎn)A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過點(diǎn)B的直線交y軸于點(diǎn)E(0,2).
(1)求該拋物線的解析式;
(2)如圖2,過點(diǎn)A作BE的平行線交拋物線于另一點(diǎn)D,點(diǎn)P是拋物線上位于線段AD下方的一個(gè)動(dòng)點(diǎn),連結(jié)PA,EA,ED,PD,求四邊形EAPD面積的最大值;
(3)如圖3,連結(jié)AC,將△AOC繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)中的三角形為△A′OC′,在旋轉(zhuǎn)過程中,直線OC′與直線BE交于點(diǎn)Q,若△BOQ為等腰三角形,請直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和媽媽開車去中央公園采風(fēng),小明爸爸發(fā)現(xiàn)他們忘記帶畫筆后立即開車追趕他們.假設(shè)媽媽和爸爸的車在同一直線公路上勻速行駛,當(dāng)爸爸的車追上媽媽的車后,兩車停下來,爸爸把畫筆交給小明.然后小明和媽媽開車以原來速度的倍繼續(xù)前行,爸爸則以來時(shí)一半的速度沿原路回家.設(shè)小明爸爸開車的時(shí)間為(秒),兩車間的距離為(米),關(guān)于的部分函數(shù)關(guān)系如圖所示,當(dāng)小明爸爸回到家時(shí),小明和媽媽正好行駛了全程的,則小明家離中央公園的距離為________米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于、兩點(diǎn),交軸于點(diǎn),點(diǎn)關(guān)于拋物線對稱軸的對稱點(diǎn)為點(diǎn).
(1)求線段的長度;
(2)為線段上方拋物線上的任意一點(diǎn),點(diǎn)為,一動(dòng)點(diǎn)從點(diǎn)出發(fā)運(yùn)動(dòng)到軸上的點(diǎn),再沿軸運(yùn)動(dòng)到點(diǎn).當(dāng)四邊形的面積最大時(shí),求的最小值;
(3)將線段沿軸向右平移,設(shè)平移后的線段為,直至平行于軸(點(diǎn)為第2小問中符合題意的點(diǎn)),連接直線.將繞著旋轉(zhuǎn),設(shè)旋轉(zhuǎn)后、的對應(yīng)點(diǎn)分別為、,在旋轉(zhuǎn)過程中直線與軸交于點(diǎn),與線段交于點(diǎn).當(dāng)是以為腰的等腰三角形時(shí),寫出的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)老師為了了解學(xué)生在數(shù)學(xué)學(xué)習(xí)中常見錯(cuò)誤的糾正情況,收集整理了學(xué)生在作業(yè)和考試中的常見錯(cuò)誤,編制了10道選擇題,每題3分,對他所教的初三(1)班、(2)班進(jìn)行了檢測,如圖表示從兩班各隨機(jī)抽取的10名學(xué)生的得分情況.
(1)利用圖中提供的信息,補(bǔ)全下表:
班級 | 平均數(shù)/分 | 中位數(shù)/分 | 眾數(shù)/分 |
初三(1)班 | __________ | 24 | ________ |
初三(2)班 | 24 | _________ | 21 |
(2)若把24分以上(含24分)記為“優(yōu)秀”,兩班各40名學(xué)生,請估計(jì)兩班各有多少名學(xué)生成績優(yōu)秀;
(3)觀察上圖的數(shù)據(jù)分布情況,請通過計(jì)算說明哪個(gè)班的學(xué)生糾錯(cuò)的得分更穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】含45°角的直角三角板如圖放置在平面直角坐標(biāo)系中,其中A(-3,0),B(0,2),則直線BC的解析式為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com