【題目】如圖在四邊形ABCD,ABC90°,ADBC,AECDBC于點(diǎn)E,AE平分BAC,AOCOADDC2,下面結(jié)論AC2AB;AB;SADC2SABEBOAE.其中正確的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】D

【解析】試題分析:∵ADBC,AECD,

∴四邊形AECD是平行四邊形.

ADDC,

∴四邊形AECD是菱形,

AEECCDAD=2,

∴∠2=∠3.

∵∠1=∠2,

∴∠1=∠2=∠3.

∵∠ABC=90°,

∴∠1+∠2+∠3=90°,

∴∠1=∠2=∠3=30°,

BEAE1,AC2AB正確;

Rt△ABE中,由勾股定理,得

AB正確;

OAC的中點(diǎn),∠ABC=90°,

BOAOCOAC

∵∠1=∠2=∠3=30°,

∴∠BAO=60°,

∴△ABO為等邊三角形.

∵∠1=∠2,

AEBO.④正確;

SADCSAECAB·CE ,SABEAB·BE,

CE=2,BE=1,

CE=2BE

SACEAB·2BE

AB·BE ,

∴SACE=2SABE

∴SADC=2SABE.③正確.

∴正確的個(gè)數(shù)有4個(gè).

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC, ∠BAC=∠ADB,BE平分∠ABCAD于點(diǎn)E,HBC上一點(diǎn),且BH=BAAC于點(diǎn)F,連接FH.

求證:AE=FH;

EG//BCAC于點(diǎn)GAG=5,AC=8,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以Rt△ABC的斜邊AB,直角邊AC為邊向外作等邊△ABD△ACE,F(xiàn)AB的中點(diǎn),DE,AB相交于點(diǎn)G,若∠BAC=30°,下列結(jié)論:①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④△DBF≌△EFA.其中正確結(jié)論的序號(hào)是( 。

A. ②④ B. ①③ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,菱形OABCOC邊落在x軸上,AOC=60°,OA=60.若菱形OABC內(nèi)部(邊界及頂點(diǎn)除外)的一格點(diǎn)Pxy)滿足:x2y2=90x90y,就稱格點(diǎn)P好點(diǎn),則菱形OABC內(nèi)部好點(diǎn)的個(gè)數(shù)為(  )

(注:所謂格點(diǎn),是指在平面直角坐標(biāo)系中橫、縱坐標(biāo)均為整數(shù)的點(diǎn).)

A. 145 B. 146 C. 147 D. 148

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD,點(diǎn)E,F(xiàn)分別在BC,CD邊上,且CE=DF,BFDE交于點(diǎn)G,若BG=2,DG=4,則CD長為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列調(diào)查中,適合于全面調(diào)查方式的是( 。

A.調(diào)查春節(jié)聯(lián)歡晚會(huì)的收視率B.調(diào)查某班學(xué)生的身高情況

C.調(diào)查一批節(jié)能燈的使用壽命D.調(diào)查某批次汽車的抗撞能力

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)AB的中點(diǎn),DEAB交于點(diǎn)G,EFAC交于點(diǎn)H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:

①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH=BD

其中正確結(jié)論的為______(請(qǐng)將所有正確的序號(hào)都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,∠BAD=60°.

(1)如圖1,點(diǎn)E為線段AB的中點(diǎn),連接DE,CE,若AB=4,求線段EC的長;

(2)如圖2,M為線段AC上一點(diǎn)(M不與A,C重合),以AM為邊,構(gòu)造如圖所示等邊三角形AMN,線段MNAD交于點(diǎn)G,連接NC,DM,Q為線段NC的中點(diǎn),連接DQ,MQ,求證:DM=2DQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

1x2+6x+5=0; (22x2+6x2=0; (3)(1+x2+21+x)-4=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案