【題目】在等腰RtABC中,D為斜邊AB的中點(diǎn),點(diǎn)EAC上,且∠EDC=72°,點(diǎn)FAB上,滿足DE=DF,則∠CEF的度數(shù)為_______.

【答案】54°或144°

【解析】分析:分兩種情況:①點(diǎn)FAD上時(shí),可求出∠DEF=81°,在CDE中可求出∠CED=63°,故可求出∠CEF=144°;②點(diǎn)FDB上時(shí),可求出∠DEF=9°,故可求出∠CEF=54°.

詳解:①點(diǎn)FAD上時(shí),如圖1,

AC=BC,DAB的中點(diǎn),且∠ACB=90°,

∴∠ADC=90°,DCE=45°

∵∠CDE=72°

∴∠EDF=18°

DE=DF

∴∠DEF=81°

ECD中,∠CDE=72°,ECD=45°

∴∠CED=63°,

∴∠CEF=144°;

②點(diǎn)FDB上時(shí),如圖2.

同理得,∠DEF=9°,

∴∠CEF=54°.

故答案為:54°144°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,四邊形中,,,且

試求:(1的度數(shù);(2)四邊形的面積(結(jié)果保留根號(hào));

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是2,點(diǎn)ECD邊的中點(diǎn),點(diǎn)F是邊BC上不與點(diǎn)B,C重合的一個(gè)動(dòng)點(diǎn),把∠C沿直線EF折疊,使點(diǎn)C落在點(diǎn)C′處.當(dāng)△ADC′為等腰三角形時(shí),FC的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)點(diǎn)A(0,4)、B(3,8).若點(diǎn)P(x,0),使得∠APB最大,則x=(  )

A. 3 B. 0 C. 4 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程=1的解為負(fù)數(shù),且關(guān)于x、y的二元一次方程組的解之和為正數(shù),則下列各數(shù)都滿足上述條件a的值的是( 。

A. ,2,5 B. 0,3,5 C. 3,4,5 D. 4,5,6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k0)的圖象與反比例函雙y=(m0)的陽(yáng)象交于點(diǎn)c(n,3),與x軸、y軸分別交于點(diǎn)A、B,過(guò)點(diǎn)CCMx軸,垂足為M,若tanCAM=,OA=2.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)點(diǎn)D是反比例函數(shù)圖象在第三象限部分上的一點(diǎn),且到x軸的距離是3,連接AD、BD,求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABCRtCED(∠ACB=∠CDE90°),點(diǎn)DBC上,ABCE相交于點(diǎn)F

(1) 如圖1,直接寫(xiě)出ABCE的位置關(guān)系

(2) 如圖2,連接ADCE于點(diǎn)G,在BC的延長(zhǎng)線上截取CHDB,射線HGABK,求證:HKBK

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC,AB=AC,AEBC邊上的高線,BM平分∠ABCAE于點(diǎn)M,經(jīng)過(guò)B,M 兩點(diǎn)的⊙OBC于點(diǎn)G,交AB于點(diǎn)F ,F(xiàn)B⊙O的直徑.

(1)求證:AM⊙O的切線

(2)當(dāng)BE=3,cosC=時(shí),求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠ABC=90°,AB=3,BC=4,過(guò)點(diǎn)B的直線把△ABC分割成兩個(gè)三角形,使其中只有一個(gè)是等腰三角形,則這個(gè)等腰三角形的面積是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案