【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數(shù)的圖象上.
(1)求反比例函數(shù)的表達式;
(2)在x軸的負半軸上存在一點P,使得S△AOP=S△AOB,求點P的坐標(biāo);
(3)若將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點E的坐標(biāo),并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.
【答案】(1);(2)P(,0);(3)E(,﹣1),在.
【解析】試題分析:(1)將點A(,1)代入,利用待定系數(shù)法即可求出反比例函數(shù)的表達式;
(2)先由射影定理求出BC=3,那么B(,﹣3),計算求出S△AOB=××4=.則S△AOP=S△AOB=.設(shè)點P的坐標(biāo)為(m,0),列出方程求解即可;
(3)先解△OAB,得出∠ABO=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出E點坐標(biāo)為(﹣,﹣1),即可求解.
試題解析:(1)∵點A(,1)在反比例函數(shù)的圖象上,∴k=×1=,∴反比例函數(shù)的表達式為;
(2)∵A(,1),AB⊥x軸于點C,∴OC=,AC=1,由射影定理得=ACBC,可得BC=3,B(,﹣3),S△AOB=××4=,∴S△AOP=S△AOB=.
設(shè)點P的坐標(biāo)為(m,0),∴×|m|×1=,∴|m|=,∵P是x軸的負半軸上的點,∴m=﹣,∴點P的坐標(biāo)為(,0);
(3)點E在該反比例函數(shù)的圖象上,理由如下:
∵OA⊥OB,OA=2,OB=,AB=4,∴sin∠ABO===,∴∠ABO=30°,∵將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=,BC﹣DE=1,∴E(,﹣1),∵×(﹣1)=,∴點E在該反比例函數(shù)的圖象上.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市開業(yè)十周年舉行了店慶活動,對A、B兩種商品實行打折出售.打折前,購買5件A商品和1件B商品需用84元;購買6件A商品和3件B商品需用108元.而店慶期間,購買3件A商品和8件B商品僅需72元,求店慶期間超市的折扣是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列直線中,一定是圓的切線的是( )
A. 與圓有公共點的直線
B. 垂直于圓的半徑的直線
C. 與圓心的距離等于半徑的直線
D. 經(jīng)過圓的直徑一端的直線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,二次函數(shù)的圖像過點 A (3,0),B (0,4)兩點,動點 P 從 A 出發(fā),在線段 AB 上沿 A → B 的方向以每秒 2 個單位長度的速度運動,過點P作 PD⊥y 于點 D ,交拋物線于點 C .設(shè)運動時間為 t (秒).
(1)求二次函數(shù)的表達式;
(2)連接 BC ,當(dāng)t=時,求△BCP的面積;
(3)如圖 2,動點 P 從 A 出發(fā)時,動點 Q 同時從 O 出發(fā),在線段 OA 上沿 O→A 的方向以 1個單位長度的速度運動,當(dāng)點 P 與 B 重合時,P 、 Q 兩點同時停止運動,連接 DQ 、 PQ ,將△DPQ沿直線 PC 折疊到 △DPE .在運動過程中,設(shè) △DPE 和 △OAB重合部分的面積為 S ,直接寫出 S 與 t 的函數(shù)關(guān)系式及 t 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,BD⊥AD,∠A=45°,E、F分別是AB、CD上的點,且BE=DF,連接EF交BD于O.
(1)求證:BO=DO;
(2)若EF⊥AB,延長EF交AD的延長線于G,當(dāng)FG=1時,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,濱海廣場裝有風(fēng)能、太陽能發(fā)電的風(fēng)光互補環(huán)保路燈,燈桿頂端裝有風(fēng)力發(fā)電機,中間裝有太陽能板,下端裝有路燈.該系統(tǒng)工作過程中某一時刻的截面圖如圖2,已知太陽能板的支架BC垂直于燈桿OF,路燈頂端E距離地面6米,DE=1.8米,∠CDE=60°.且根據(jù)我市的地理位置設(shè)定太陽能板AB的傾斜角為43°.AB=1.5米,CD=1米,為保證長為1米的風(fēng)力發(fā)電機葉片無障礙安全旋轉(zhuǎn),對葉片與太陽能板頂端A的最近距離不得少于0.5米,求燈桿OF至少要多高?(利用科學(xué)計算器可求得sin43°≈0.6820,cos43°≈0.7314,tan43°≈0.9325,結(jié)果保留兩位小數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com