【題目】如圖,平行四邊形ABCD中,BD⊥AD,∠A=45°,E、F分別是AB、CD上的點,且BE=DF,連接EF交BD于O.
(1)求證:BO=DO;
(2)若EF⊥AB,延長EF交AD的延長線于G,當FG=1時,求AE的長.
【答案】(1)證明過程見解析;(2)AE=3.
【解析】
試題分析:(1)根據(jù)平行四邊形的性質得出∠OBE =∠ODF,從而得出△OBE和△ODF全等,從而得出答案;(2)根據(jù)EF⊥AB,AB ∥DC得出∠GEA=∠GFD=90°,根據(jù)∠A的度數(shù)得出AE=GE,根據(jù)垂直得出OF=FG=1,根據(jù)三角形全等得出OE=OF=1,從而根據(jù)GE=OE+OF+FG得出答案.
試題解析:(1)∵四邊形ABCD是平行四邊形, ∴DC∥AB ∴∠OBE =∠ODF.
在△OBE與△ODF中, ∵ ∴△OBE≌△ODF(AAS) ∴BO=DO
(2)∵EF⊥AB,AB ∥DC, ∴∠GEA=∠GFD=90° ∵∠A=45°, ∴∠G=∠A=45°
∴AE=GE ∵BD⊥AD, ∴∠ADB=∠GDO=90° ∴∠GOD=∠G=45° ∴DG=DO
∴OF=FG= 1 由(1)可知,OE=OF=1 ∴GE=OE+OF+FG=3 ∴AE=3
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數(shù)的圖象上.
(1)求反比例函數(shù)的表達式;
(2)在x軸的負半軸上存在一點P,使得S△AOP=S△AOB,求點P的坐標;
(3)若將△BOA繞點B按逆時針方向旋轉60°得到△BDE.直接寫出點E的坐標,并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一垂直于地面的燈柱AB被一鋼筋CD固定,CD與地面成45°夾角(∠CDB=45°),在C點上方2米處加固另一條鋼線ED,ED與地面成53°夾角(∠EDB=53°),那么鋼線ED的長度約為多少米?(結果精確到1米,參考數(shù)據(jù):sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于長為半徑畫弧,兩弧交于一點P,連接AP并延長交BC于點E,連接EF.
(1)四邊形ABEF是_______;(選填矩形、菱形、正方形、無法確定)(直接填寫結果)
(2)AE,BF相交于點O,若四邊形ABEF的周長為40,BF=10,則AE的長為________,∠ABC=________°.(直接填寫結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1:y1=x+m與y軸交于點A(0,6),直線l2:y2=kx+1分別與x軸交于點B(-2,0),與y軸交于點C.兩條直線相交于點D,連接AB.
(1)求兩直線交點D的坐標;
(2)求△ABD的面積;
(3)根據(jù)圖象直接寫出y1>y2時自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,n+1個邊長為2的等邊三角形有一條邊在同一直線上,設△B2D1C1的面積為S1,△B3D2C2的面積為S2,…,△Bn+1DnCn的面積為Sn,則S2= ;Sn= .(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某中學舉辦了一次以“我的中國夢”為主題的演講比賽,最后確定7名同學參加決賽,他們的決賽成績各不相同,其中李華已經(jīng)知道自己的成績,但能否進前四名,他還必須清楚這7名同學成績的______________(填”平均數(shù)”“眾數(shù)”或“中位數(shù)”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A1、A2、A3在x軸上,且OA1=A1A2=A2A3,分別過點A1、A2、A3作y軸的平行線,與反比例函數(shù)的圖象分別交于點B1、B2、B3,分別過點B1、B2、B3作x軸的平行線,分別與y軸交于點C1、C2、C3,連結OB1、OB2、OB3,那么圖中陰影部分的面積之和為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com