【題目】岳陽市整治農(nóng)村“空心房”新模式,獲評(píng)全國改革開放40年地方改革創(chuàng)新40案例.據(jù)了解,我市某地區(qū)對(duì)轄區(qū)內(nèi)“空心房”進(jìn)行整治,騰退土地1200公頃用于復(fù)耕和改造,其中復(fù)耕土地面積比改造土地面積多600公頃.

1)求復(fù)耕土地和改造土地面積各為多少公頃;

2)該地區(qū)對(duì)需改造的土地進(jìn)行合理規(guī)劃,因地制宜建設(shè)若干花卉園和休閑小廣場(chǎng),要求休閑小廣場(chǎng)總面積不超過花卉園總面積的,求休閑小廣場(chǎng)的總面積最多為多少公頃.

【答案】(1)改造土地面積是300公頃,復(fù)耕土地面積是900公頃;(275公頃.

【解析】

1)設(shè)改造土地面積是x公頃,則復(fù)耕土地面積是公頃,根據(jù)“復(fù)耕土地面積+改造土地面積=1200畝”列出方程并解答.

2)設(shè)休閑小廣場(chǎng)的總面積是y公頃,則花卉園的總面積是公頃,根據(jù)“小廣場(chǎng)總面積不超過花卉園總面積的”,列出不等式.

1)設(shè)改造土地面積是x公頃,則復(fù)耕土地面積是公頃.

由題意,得,解得,則

答:改造土地面積是300公頃,復(fù)耕土地面積是900公頃.

2)設(shè)休閑小廣場(chǎng)的總面積是y公頃,則花卉園的總面積是公頃.

由題意,得

解得.結(jié)合實(shí)際可得,

故休閑小廣場(chǎng)的總面積最多為75公頃.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,先研究下面三角形、四邊形、五邊形、六邊形…多邊形的邊數(shù)n及其對(duì)角線條數(shù)t的關(guān)系,再完成下面問題:

1)若一個(gè)多邊形是七邊形,它的對(duì)角線條數(shù)為   ,n邊形的對(duì)角線條數(shù)為t   (用n表示).

2)求正好65條對(duì)角線的多邊形是幾邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線與反比例函數(shù)交于、兩點(diǎn)與軸交于,若,則

A. 6 B. 7 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,,點(diǎn),,分別為線段,上的任意一點(diǎn),則的最小值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yaxbx4(a,b是常數(shù).a0)的圖象過點(diǎn)(3,-1).

(1)試判斷點(diǎn)(2,22a)是否也在該函數(shù)的圖象上,并說明理由.

(2)若該二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),求該函數(shù)表達(dá)式.

(3)已知二次函數(shù)的圖像過()(,)兩點(diǎn),且當(dāng)時(shí),始終都有,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,有一塊含有30°的直角三角形的直角邊的長恰與另一塊等腰直角三角形的斜邊的長相等.把該套三角板放置在平面直角坐標(biāo)系中,且

1)若某開口向下的拋物線的頂點(diǎn)恰好為點(diǎn),請(qǐng)寫出一個(gè)滿足條件的拋物線的解析式.

2)若把含30°的直角三角形繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)后,斜邊恰好與軸重疊,點(diǎn)落在點(diǎn),試求圖中陰影部分的面積(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明想測(cè)量一棵樹的高度,他發(fā)現(xiàn)樹的影子恰好落在地面和一斜坡上;如圖,此時(shí)測(cè)得地面上的影長為8米,坡面上的影長為4已知斜坡的坡角為30°,同一時(shí)刻,一根長為1米,垂直于地面放置的標(biāo)桿在地面上的影長為2米,則樹的高度為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象和反比例函數(shù)的圖象相交于兩點(diǎn).

1)試確定一次函數(shù)與反比例函數(shù)的解析式;

2)求的面積;

3)結(jié)合圖象,直接寫出使成立的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,H為射線OA上一定點(diǎn),,P為射線OB上一點(diǎn),M為線段OH上一動(dòng)點(diǎn),連接PM,滿足為鈍角,以點(diǎn)P為中心,將線段PM順時(shí)針旋轉(zhuǎn),得到線段PN,連接ON

1)依題意補(bǔ)全圖1;

2)求證:;

3)點(diǎn)M關(guān)于點(diǎn)H的對(duì)稱點(diǎn)為Q,連接QP.寫出一個(gè)OP的值,使得對(duì)于任意的點(diǎn)M總有ON=QP,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案