【題目】綜合與探究
如圖,在平面直角坐標系xOy中,拋物線W的函數(shù)表達式為y=﹣x2+2x+3,拋物線W與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸交于點C,它的頂點為D,直線l經(jīng)過A、C兩點.
(1)求點A、B、C、D的坐標.
(2)將直線l向下平移m個單位,對應(yīng)的直線為l′.
①若直線l′與x軸的正半軸交于點E,與y軸的正半軸交于點F,△AEF的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
②求m的值為多少時,S的值最大?最大值為多少?
(3)若將拋物線W也向下平移m單位,再向右平移1個單位,使平移后得到的二次函數(shù)圖象的頂點P落在△AOC的內(nèi)部(不包括△AOC的邊界),請直接寫出m的取值范圍.
【答案】(1)點D坐標為(1,4)(2)①S=﹣m2+m(0<m<3),②當m=時,S的值最大,最大值為(3)3<m<4
【解析】試題分析:(1)令y=0,求出A,B的橫坐標,令x=0求出C的縱坐標,把二次函數(shù)解析式轉(zhuǎn)化為頂點式即可得出D的坐標;
(2)①利用待定系數(shù)法確定出直線l的解析式,根據(jù)平移得出l′的解析式,求出與坐標軸的交點E,F的坐標,得出AE,OF的長,最后用面積公式即可得出結(jié)論;
②借助①的結(jié)論確定出最大值;
(3)利用平移后的拋物線的頂點坐標,即可得出結(jié)論.
試題解析:
解:(1)當y=0時,得﹣x2+2x+3=0,解得x=3或x=﹣1,
∴A,B兩點坐標分別為(3,0),(﹣1,0),
當x=0時,得y=3,
∴點C坐標為(0,3),
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴點D坐標為(1,4),
(2)①設(shè)直線l的解析式為y=kx+b,
則有,
∴,
∴直線l的解析式為y=﹣x+3.
∴直線l′的解析式為y=﹣x+3﹣m.
當y=0時,解得x=3﹣m,
∴E點坐標為(3﹣m,0)
當x=0時,解得y=3﹣m,
∴F點坐標為(0,3﹣m)
∴AE=3﹣(3﹣m)=m,OF=3﹣m.
∴S=×AE×OF=m(3﹣m)=﹣m2+m(0<m<3),
②∵S=﹣m2+m=﹣(m﹣)2+
∴當m=時,S有值最大,最大值為.
(3)∵拋物線W的函數(shù)表達式為y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴設(shè)平移后的拋物線解析式為y=﹣(x﹣1﹣1)2+4﹣m=﹣(x﹣2)2+4﹣m,
∴P(2,4﹣m)
∵A(3,0),C(0,3),
∴直線AC的解析式為y=﹣x+3,當x=2時,y=1,
∵平移后得到的二次函數(shù)圖象的頂點P落在△AOC的內(nèi)部,
∴0<4﹣m<1,
∴3<m<4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,為的中點,過點的直線分別與、交于點、,連接交于點,連接、.若,,則下列結(jié)論:①;②;③四邊形是菱形;④.其中正確結(jié)論的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把Rt△ABC放在直角坐標系內(nèi),其中∠CAB=90°,BC=5,點A,B的坐標分別為(1,0),(4,0),將△ABC沿x軸向右平移,當點C落在直線y=2x-6上時,線段BC掃過的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)圖象經(jīng)過(﹣2,4).
(1)如果點(a,1)和(﹣1,b)在函數(shù)圖象上,求a,b的值;
(2)過圖象上一點P作y軸的垂線,垂足為Q,S△OPQ=,求Q的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=2x-3與雙曲線在第一象限交于點A,與x軸交于點B,過點A作AC⊥x軸,垂足為C,已知∠BAC=∠AOC.
(1)求A,B兩點的坐標及k的值;
(2)請直接寫出當y2>y1>0時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC=90°,AD⊥BC,垂足為D,則下面的結(jié)論中正確的個數(shù)為( 。
①AB與AC互相垂直;
②AD與AC互相垂直;
③點C到AB的垂線段是線段AB;
④線段AB的長度是點B到AC的距離;
⑤線段AB是B點到AC的距離.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點D為BC上一點,且AD=DC,過A,B,D三點作⊙O,AE是⊙O的直徑,連結(jié)DE.
(1)求證:AC是⊙O的切線;
(2)若sinC=,AC=6,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個批發(fā)商銷售成本為20元/千克的某產(chǎn)品,根據(jù)物價部門規(guī)定:該產(chǎn)品每千克售價不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價x(元/千克)滿足一次函數(shù)關(guān)系,對應(yīng)關(guān)系如下表:
售價x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數(shù)關(guān)系式;
(2)該批發(fā)商若想獲得4000元的利潤,應(yīng)將售價定為多少元?
(3)該產(chǎn)品每千克售價為多少元時,批發(fā)商獲得的利潤w(元)最大?此時的最大利潤為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com