【題目】如圖,已知拋物線與軸、軸分別相交于點(diǎn)A(-1,0)和B(0,3),其頂點(diǎn)為D.
(1)求這條拋物線的解析式;
(2)若拋物線與軸的另一個(gè)交點(diǎn)為E,求△ODE的面積;
(3)拋物線的對稱軸上是否存在點(diǎn)P使得△PAB的周長最短.若存在請求出點(diǎn)P的坐標(biāo),若不存在說明理由.
【答案】(1)y=﹣x2+2x+3;(2)S△ODE=6;(3)點(diǎn)P坐標(biāo)(1,2).
【解析】
(1)將A(-1,0)、B(0,3)分別代入y=-x2+bx+c,解方程組求得b、c的值,即可求得拋物線的解析式;(2)先求得點(diǎn)D、點(diǎn)E的坐標(biāo),再根據(jù)三角形的面積公式即可求解;(3)連接BE交直線x=1于點(diǎn)P,此時(shí)PA+PB的值最小,由此求得點(diǎn)P的坐標(biāo)即可.
(1)解:根據(jù)題意得,解得 ,
∴拋物線解析式為y=﹣x2+2x+3
(2)解:當(dāng)y=0時(shí),﹣x2+2x+3=0,解得x1=﹣1,x2=3,則E(3,0);
∵拋物線y=﹣(x﹣1)2 + 4的頂點(diǎn)坐標(biāo)D(1,4),
∴S△ODE=×3×4=6;
(3)連接BE交直線x=1于點(diǎn)P,如圖,
由對稱性知PA=PE,
∴PA+PB=PE+PB=BE,
此時(shí)PA+PB的值最小,
求得直線BE的解析式為 y=﹣x+3
當(dāng)x=1時(shí),y=﹣x+3=3,
∴點(diǎn)P坐標(biāo)(1,2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,投影線方向如圖所示,點(diǎn)C在斜邊AB上的正投影為點(diǎn)D,
(1)試寫出邊AC、BC在AB上的投影;
(2)試探究線段AC、AB和AD之間的關(guān)系;
(3)線段BC、AB和BD之間也有類似的關(guān)系嗎?請直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=6,過點(diǎn)C的直線MN∥AB,D為AB上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于點(diǎn)E,垂足為F,連接CD,BE.
(1)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由;
(2)在(1)的條件下,當(dāng)∠A等于多少度時(shí),四邊形BECD是正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,邊長為2的正方形OABC的頂點(diǎn)A、C分別在x軸正半軸、y軸的負(fù)半軸上,二次函數(shù)y=(xh)2+k的圖象經(jīng)過B、C兩點(diǎn).
(1)求該二次函數(shù)的頂點(diǎn)坐標(biāo);
(2)結(jié)合函數(shù)的圖象探索:當(dāng)y>0時(shí)x的取值范圍;
(3)設(shè)m<,且A(m,y1),B(m+1,y2)兩點(diǎn)都在該函數(shù)圖象上,試比較y1、y2的大小,并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△AOB中,將扇形COD按圖1擺放,使扇形的半徑OC、OD分別與OA、OB重合,OA=OB=2,OC=OD=1,固定等邊△AOB不動(dòng),讓扇形COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),線段AC、BD也隨之變化,設(shè)旋轉(zhuǎn)角為α.(0<α≤360°)
(1)當(dāng)OC∥AB時(shí),旋轉(zhuǎn)角α= 度;
發(fā)現(xiàn):(2)線段AC與BD有何數(shù)量關(guān)系,請僅就圖2給出證明.
應(yīng)用:(3)當(dāng)A、C、D三點(diǎn)共線時(shí),求BD的長.
拓展:(4)P是線段AB上任意一點(diǎn),在扇形COD的旋轉(zhuǎn)過程中,請直接寫出線段PC的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,反比例函數(shù)y(b≠0)與二次函數(shù)y=ax2+bx(a≠0)的圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個(gè)信封,每個(gè)信封內(nèi)各裝有四張完全相同的卡片,其中一個(gè)信封內(nèi)的四張卡片上分別寫有1,2,3,4四個(gè)數(shù),另一個(gè)信封內(nèi)的四張卡片上分別寫有5,6,7,8四個(gè)數(shù).甲,乙兩人商定了一個(gè)游戲,規(guī)則是:從這兩個(gè)信封中各隨機(jī)抽取一張卡片,然后把卡片上的兩個(gè)數(shù)相乘,如果得到的積大于16,則甲獲勝,否則乙獲勝.
(1)請你通過列表(或畫樹狀圖)計(jì)算甲獲勝的概率;
(2)你認(rèn)為這個(gè)游戲公平嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知BC是⊙O的直徑,點(diǎn)D是BC延長線上一點(diǎn),AB=AD,AE是⊙O的弦,∠AEC=30°.
(1)求證:直線AD是⊙O的切線;
(2)若AE⊥BC,垂足為M,⊙O的半徑為4,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OABC是邊長為1的正方形,OC與x軸正半軸的夾角為15°,點(diǎn)B在拋物線y=ax2(a<0)的圖象上,則a的值為( 。
A. B. C. ﹣2 D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com