【題目】如圖,ABC內(nèi)接于⊙O,且AB為⊙O的直徑ODAB,與AC交于點E,與過點C的⊙O切線交于點D.

(1)若AC=6,BC=3,求OE的長.

(2)試判斷∠A與∠CDE的數(shù)量關(guān)系,并說明理由.

【答案】(1)證明見解析;(2)∠CDE=2A,理由見解析.

【解析】分析:(1)由勾股定理求AB,證明AOE∽△ACB,根據(jù)相似三角形的對應(yīng)線段成比例求OE;(2)連接OC,可知∠3=2∠A,只需用同角的余角證∠D=∠3即可.

詳解:(1)∵AB為⊙O的直徑,∴∠ACB=900,

RtABC由勾股定理得:AB=3,

OAAB.

ODAB,∴∠AOE=∠ACB=900,由∵∠A=∠A,∴△AOE∽△ACB,

,即解得:OE.

(2)∠CDE=2∠A,

理由如下:連接OC,如圖所示:

OAOC,∴∠1=∠A,

CD是⊙O的切線,∴OCCD,∴∠OCD=900,∴∠2+∠CDE=900,

ODAB,∴∠2+∠3=900,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,

∴∠CDE=2∠A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件,其中甲種獎品每件40元,乙種獎品每件30元.

(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件;

(2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一個正方形ABCD,P是邊BC上一點.繞點A逆時針方向旋轉(zhuǎn)90°得到(點B,P的對應(yīng)點分別是

1)畫出旋轉(zhuǎn)后所得到的;

2)聯(lián)結(jié),設(shè),,試用表示的面積;

3)若的面積為18,的面積為5,試求PC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在AOB中,∠ABO=90°OB=4,AB=8,直線y=-x+b分別交OA、AB于點C、D,且ΔBOD的面積是4.

(1)求直線AO的解析式;

(2)求直線CD的解析式;

(3)若點Mx軸上的點,且使得點M到點A和點C的距離之和最小,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應(yīng)用題:

已知A、B兩地相距48千米,甲騎自行車每小時走18千米,乙步行每小時走6千米,甲乙兩人分別A、B兩地同時出發(fā).

1)同向而行,開始時乙在前,經(jīng)過多少小時甲追上乙?

2)相向而行,經(jīng)過多少小時兩人相距40千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求知中學有一塊四邊形的空地ABCD,如下圖所示,學校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要250元,問學校需要投入多少資金買草皮?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=12,BC=9,點E,G分別為邊AB,AD上的點,若矩形AEFG與矩形ABCD相似,且相似比為,連接CF,則CF=   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,,EBD中點,延長CD到點F,使

求證:

求證:四邊形ABDF為平行四邊形

,,求四邊形ABDF的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在操場上做游戲,他發(fā)現(xiàn)地上有一個不規(guī)則的封閉圖形ABC.為了知道它的面積,小明在封閉圖形內(nèi)劃出了一個半徑為1米的圓,在不遠處向圈內(nèi)擲石子,且記錄如下:

依此估計此封閉圖形ABC的面積是_____m2

查看答案和解析>>

同步練習冊答案