【題目】列方程解應(yīng)用題:

已知A、B兩地相距48千米,甲騎自行車每小時走18千米,乙步行每小時走6千米,甲乙兩人分別A、B兩地同時出發(fā).

1)同向而行,開始時乙在前,經(jīng)過多少小時甲追上乙?

2)相向而行,經(jīng)過多少小時兩人相距40千米?

【答案】(1)同向而行,開始時乙在前,經(jīng)過4小時甲追上乙;(2)相向而行,經(jīng)過小時或小時兩人相距40千米.

【解析】

1)根據(jù)題意可以列出相應(yīng)的方程,本題得以解決;
2)根據(jù)題意,分兩種情況,一種是相遇前相距40千米,一種是相遇后相距40千米,從而可以分別寫出兩種情況下的方程,本題得以解決.

1)設(shè)同向而行,開始時乙在前,經(jīng)過x小時甲追上乙,

18x6x48

解得,x4

即同向而行,開始時乙在前,經(jīng)過4小時甲追上乙;

2)設(shè)相向而行,經(jīng)過x小時兩人相距40千米,

18x+6x484018x+6x48+40,

解得xx

即相向而行,經(jīng)過小時或小時兩人相距40千米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)藝術(shù)節(jié)期間,學(xué)校向?qū)W生征集書畫作品,學(xué)校從全校30個班中隨機抽取了4個班 (用A,B,C,D表示),對征集到的作品的數(shù)量進行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.請根據(jù)以上信息,回答下列問題:

(1)請你將條形統(tǒng)計圖補充完整,并估計全校共征集多少件作品?

(2)如果全校征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,,將長方形ABCD繞點D逆時針旋轉(zhuǎn)90°,點A、BC分別對應(yīng)點E、F、G.

(1)畫出長方形EFGD;

(2)連接BD、DF、BF,請用含有a、b的代數(shù)式表示的面積;

(3)如果BFCD于點H,請用含有ab的代數(shù)式表示CH的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個頂點、拋物線A、C兩點.

直接寫出點A的坐標(biāo),并求出拋物線的解析式;

動點P從點A出發(fā)沿線段AB向終點B運動,同時點Q從點C出發(fā),沿線段CD向終點D運動速度均為每秒1個單位長度,運動時間為t過點PAC于點E

過點E于點F,交拋物線于點當(dāng)t為何值時,線段EG最長?

連接在點P、Q運動的過程中,判斷有幾個時刻使得是等腰三角形?請直接寫出相應(yīng)的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過點、

(1)求拋物線的解析式;

(2)聯(lián)結(jié)AC、BC、AB,求的正切值;

(3)點P是該拋物線上一點,且在第一象限內(nèi),過點P作軸于點,當(dāng)點在點的上方,且相似時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,且AB為⊙O的直徑ODAB,與AC交于點E,與過點C的⊙O切線交于點D.

(1)若AC=6,BC=3,求OE的長.

(2)試判斷∠A與∠CDE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館準(zhǔn)備購進一批換氣扇,從電器商場了解到:一臺A型換氣扇和三臺B型換氣扇共需275;三臺A型換氣扇和兩臺B型換氣扇共需300.

(1)求一臺A型換氣扇和一臺B型換氣扇的售價各是多少元;

(2)若該賓館準(zhǔn)備同時購進這兩種型號的換氣扇共80,并且A型換氣扇的數(shù)量不多于B型換氣扇數(shù)量的3,請設(shè)計出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級兩個班,各選派10名學(xué)生參加學(xué)校舉行的漢字聽寫大賽預(yù)賽,各參賽選手的成績?nèi)缦拢?/span>

(1)班:88,91,92,93,93,9394,9898,100

(2)班:89,93,93,9395,9696,98,98,99

通過整理,得到數(shù)據(jù)分析表如下:

班級

最高分

平均分

中位數(shù)

眾數(shù)

方差

(1)

100

m

93

93

12

(2)

99

95

n

p

8.4

(1)直接寫出表中m、n、p的值為:m=______,n=______,p=______;

(2)依據(jù)數(shù)據(jù)分析表,有人說:最高分在(1)班,(1)班的成績比(2)班好.但也有人說(2)班的成績要好.請給出兩條支持九(2)班成績更好的理由;

(3)學(xué)校確定了一個標(biāo)準(zhǔn)成績,等于或大于這個成績的學(xué)生被評定為優(yōu)秀等級,如果九(2)班有一半的學(xué)生能夠達(dá)到優(yōu)秀等級,你認(rèn)為標(biāo)準(zhǔn)成績應(yīng)定為______分,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,點A、B、Cx軸上,點D、Ey軸上,OA=OD=2,OC=OE=4,B為線段OA的中點,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M,點P為線段FG上一個動點(與F、G不重合),PQy軸與拋物線交于點Q.

(1)求經(jīng)過B、E、C三點的拋物線的解析式;

(2)判斷BDC的形狀,并給出證明;當(dāng)P在什么位置時,以P、O、C為頂點的三角形是等腰三角形,并求出此時點P的坐標(biāo);

(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案