【題目】如圖,點O是等邊內(nèi)一點將繞點C按順時針方向旋轉得,連接已知.
求證:是等邊三角形;
當時,試判斷的形狀,并說明理由;
探究:當為多少度時,是等腰三角形.
【答案】(1)證明見解析(2)△AOD是直角三角形;(3)當α的度數(shù)為125°,或110°,或140°時,△AOD是等腰三角形
【解析】
本題是條件性開放題,要找到變化中的不變量才能有效解決問題,尤其是注意分類討論.(1)由旋轉性質,可知CD=CO,再加旋轉角是60°, 根據(jù)有一個角是60°的等腰三角形是等邊三角形即可解答;(2) 根據(jù)旋轉性質得△BOC≌△ADC,所以∠ADC=∠BOC=150°,同(1)可知△COD是等邊三角形,每個角等于60°,從而求得∠ADO=90°,即可解答;(3)需要進行分類討論,分AO=AD,OA=OD,OD=AD三種情況,再根據(jù)等邊對等角,是等邊三角形;∠BOC=∠ADC=,即可解答.
科目:初中數(shù)學 來源: 題型:
【題目】若△ABC中AB=AC,且面積為定值,點P在直線BC上,且P到直線AC的距離為PF.當PF=3,C到AB的距離CH=7時,P到AB的距離為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校共有1000名學生,為了了解他們的視力情況,隨機抽查了部分學生的視力,并將調(diào)查的數(shù)據(jù)整理繪制成直方圖和扇形圖.
(1)這次共調(diào)查了多少名學生?扇形圖中的、值分別是多少?
(2)補全頻數(shù)分布直方圖;
(3)在光線較暗的環(huán)境下學習的學生占對應被調(diào)查學生的比例如下表:
視力 | 0.35~0.65 | 0.65~0.95 | 0.95~1.25 | 1.25~l.55 | |
比例 |
根據(jù)調(diào)查結果估計該校有多少學生在光線較暗的環(huán)境下學習?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了更好治理西太湖水質,保護環(huán)境,市治污公司決定購買10 臺污水處理設備,現(xiàn)有A、B兩種型號的設備,其中每臺的價格,月處理污水量如下表:
經(jīng)調(diào)查:購買-臺A型設備比購買一-臺B型設備多2萬元,購買2臺A型設備比購買4臺B型設備少4萬元.
(1)求a、b的值;
(2)經(jīng)預算:市治污公司購買污水處理設備的資金不超過47萬元,并且該月要求處理西太湖的污水量不低于1860 噸,則有哪幾種購買方案?請指出最省錢的一種購買方案,并指出相應的費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面上,矩形ABCD與直徑為QP的半圓K如圖如圖①擺放,分別延長DA和QP交于點O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.讓線段OD及矩形ABCD位置固定,將線段OQ連帶著半圓K一起繞著點O按逆時針開始旋轉,如圖②,當點P恰好落在BC邊上時,S陰影=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點是坐標原點,,,均為等邊三角形,在軸正半軸上,點,點,點在內(nèi)部,點在的外部,,,與交于點,連接,,,.
(1)求點的坐標;
(2)判斷與的數(shù)量關系,并說明理由;
(3)直接寫出的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】暑假期間,小明和父母一起開車到距家200千米的景點旅游.出發(fā)前,汽車油箱內(nèi)儲油45升,當行駛150千米時,發(fā)現(xiàn)油箱剩余油量為30升.(假設行駛過程中汽車的耗油量是均勻的.)
(1)寫出用行駛路程x(千米)來表示剩余油量Q(升)的代數(shù)式;
(2)當x=300千米時,求剩余油量Q的值;
(3)當油箱中剩余油量少于3升時,汽車將自動報警.如果往返途中不加油,他們能否在汽車報警前回到家?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com