【題目】如圖,DE是△ABC邊AB的垂直平分線,分別交AB、BC于D、E。AE平分∠BAC. 設(shè)∠B = x(單位:度),∠C = y(單位:度).
(1)求y隨x變化的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)請(qǐng)討論當(dāng)△ABC為等腰三角形時(shí),∠B為多少度?
【答案】(1)y = 180 – 3x,0< x <60(2)45或36
【解析】解:(1)∵DE 垂直平分AB,∴∠BAE = ∠B =x,
又∵AE平分∠BAC,∴∠BAC =2∠BAE = 2x---------------------1/
∴ y = 180 – 3x ------------------------------------------2/
0< x <60-----------------------------------------------3/
(2)顯然,AC≠BC-----------------------------------------4/.
若 AB = AC,此時(shí),x = y,即:180-3x = x--------------5/
得:x = 45(度);------------------------------------6/
若 AB = BC,此時(shí),2x = y,即:180 – 3x = 2x
得:x = 36(度).
∴當(dāng)△ABC為等腰三角形時(shí),∠B分別為45或36----------------8/
(1)根據(jù)線段的垂直平分線求出∠BAE的度數(shù),求出∠BAC即可;
(2)AB=AC時(shí),得出180-3x=x,求出即可;AB=BC時(shí),得出180-3x=2x,求出即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹(shù)BC的高度,他們?cè)谛逼律螪處測(cè)得大樹(shù)頂端B的仰角是30°,朝大樹(shù)方向下坡走6米到達(dá)坡底A處,在A處測(cè)得大樹(shù)頂端B的仰角是48°,若坡角∠FAE=30°,求大樹(shù)的高度(結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】畫(huà)圖并填空:如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都為 1,在方格紙內(nèi)將△ABC經(jīng)過(guò)一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B 的對(duì)應(yīng)點(diǎn) B′.
(1)在給定方格紙中畫(huà)出平移后的△A′B′C′;
(2)線段 AA′與線段 BB′的數(shù)量和位置關(guān)系是___________;
(3)求△A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),我國(guó)煤礦安全事故頻頻發(fā)生,其中危害最大的是瓦斯,其主要成分是CO.在一次礦難事件的調(diào)查中發(fā)現(xiàn):從零時(shí)起,井內(nèi)空氣中CO的濃度達(dá)到4mg/L,此后濃度呈直線型增加,在第7小時(shí)達(dá)到最高值46mg/L,發(fā)生爆炸;爆炸后,空氣中的CO濃度成反比例下降.如圖所示,根據(jù)題中相關(guān)信息回答下列問(wèn)題:
(1)求爆炸前后空氣中CO濃度y與時(shí)間x的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量取值范圍;
(2)當(dāng)空氣中的CO濃度達(dá)到34mg/L時(shí),井下3km的礦工接到自動(dòng)報(bào)警信號(hào),這時(shí)他們至少要以多少km/h的速度撤離才能在爆炸前逃生?
(3)礦工只有在空氣中的CO濃度降到4mg/L及以下時(shí),才能回到礦井開(kāi)展生產(chǎn)自救,求礦工至少在爆炸后多少小時(shí)才能下井?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)A(1,0)、B(4,0)、C(0,3)三點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得四邊形PAOC的周長(zhǎng)最?若存在,求出四邊形PAOC周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.
(3)如圖②,點(diǎn)Q是線段OB上一動(dòng)點(diǎn),連接BC,在線段BC上是否存在這樣的點(diǎn)M,使△CQM為等腰三角形且△BQM為直角三角形?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,∠C=90°,BC=3,D,E分別在AB、AC上,將△ADE沿DE翻折后,點(diǎn)A落在點(diǎn)A′處,若A′為CE的中點(diǎn),則折痕DE的長(zhǎng)為( )
A.
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分10分)在ABCD中,AC、BD交于點(diǎn)O,過(guò)點(diǎn)O作直線EF、GH,分別交平行四邊形的四條邊于E、G、F、H四點(diǎn),連結(jié)EG、GF、FH、HE.
(1)如圖①,試判斷四邊形EGFH的形狀,并說(shuō)明理由;
(2)如圖②,當(dāng)EF⊥GH時(shí),四邊形EGFH的形狀是 ;
(3)如圖③,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是 ;
(4)如圖④,在(3)的條件下,若AC⊥BD,試判斷四邊形EGFH的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一矩形OABC放在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,點(diǎn)E是邊AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過(guò)點(diǎn)E的反比例函數(shù)y= (x>0)的圖象與邊BC交與點(diǎn)F.
(1)若△OAE、△OCF的面積分別為S1、S2 , 且S1+S2=2,求k的值;
(2)在(1)的結(jié)論下,當(dāng)OA=2,OC=4時(shí),求三角形OEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開(kāi)軌道,前2分鐘其速度v(米/分)與時(shí)間t(分)滿足二次函數(shù)v=at2 , 后三分鐘其速度v(米/分)與時(shí)間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測(cè)速儀測(cè)得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.
(2)彈珠在軌道上行駛的最大速度.
(3)求彈珠離開(kāi)軌道時(shí)的速度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com