【題目】如圖,矩形紙片ABCD,AD=4,AB=3,如果點(diǎn)E在邊BC上,將紙片沿AE折疊,使點(diǎn)B落在點(diǎn)F處,聯(lián)結(jié)FC,當(dāng)△EFC是直角三角形時(shí),那么BE的長(zhǎng)為( )
A. 1.5B. 3
C. 1.5或3D. 有兩種情況以上
【答案】C
【解析】
分兩種情況:①當(dāng)∠EFC=90°時(shí),先判斷出點(diǎn)F在對(duì)角線AC上,利用勾股定理列式求出AC,設(shè)BE=x,表示出CE,根據(jù)翻折變換的性質(zhì)可得AF=AB,EF=BE,然后在Rt△CEF中,利用勾股定理列出方程求解即可;②當(dāng)∠CEF=90°時(shí),判斷出四邊形ABEF是正方形,根據(jù)正方形的四條邊都相等可得BE=AB.
解:分兩種情況:
①當(dāng)∠EFC=90°時(shí),如圖1,
∵∠AFE=∠B=90°,∠EFC=90°,
∴點(diǎn)A、F、C共線,
∵矩形ABCD的邊AD=4,
∴BC=AD=4,
在Rt△ABC中,,
設(shè)BE=x,則CE=BC﹣BE=4﹣x,
由翻折的性質(zhì)得,AF=AB=3,EF=BE=x,
∴CF=AC﹣AF=5﹣3=2,
在Rt△CEF中,EF2+CF2=CE2,
即x2+22=(4﹣x)2,
解得x=1.5,
即BE=1.5;
②當(dāng)∠CEF=90°時(shí),如圖2,
由翻折的性質(zhì)得,∠AEB=∠AEF=×90°=45°,
∴四邊形ABEF是正方形,
∴BE=AB=3,
綜上所述,BE的長(zhǎng)為1.5或3.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果三角形的兩個(gè)內(nèi)角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準(zhǔn)互余三角形”.
(1)若△ABC是“準(zhǔn)互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明△ABD是“準(zhǔn)互余三角形”.試問(wèn)在邊BC上是否存在點(diǎn)E(異于點(diǎn)D),使得△ABE也是“準(zhǔn)互余三角形”?若存在,請(qǐng)求出BE的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準(zhǔn)互余三角形”,求對(duì)角線AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情填,
在綜合與實(shí)踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開(kāi)展數(shù)學(xué)活動(dòng),如圖1,將矩形紙片ABCD沿對(duì)角線AC剪開(kāi),得到△ABC和△ACD、并且量得AB=2cm,AC=4cm.
操作發(fā)現(xiàn):
(1)將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn)∠α,使∠α=∠BAC,得到加圖2所示的△AC′D,過(guò)點(diǎn)C作AC′的平行線,與DC′的延長(zhǎng)線交于點(diǎn)E,則四邊形ACEC'的形狀是_________;
(2)創(chuàng)新小組將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn),使B,A,D三點(diǎn)在同一條直線上,得到如圖3所示的△AC′D,連接CC′,取CC'的中點(diǎn)F,連精AF并延長(zhǎng)到點(diǎn)G,使FG=AF,連接CG,C′G,得到四邊形ACGC′,發(fā)現(xiàn)它是正方形,請(qǐng)你證明這個(gè)結(jié)論.
實(shí)踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將△ABC沿著BD方向平移,使點(diǎn)B與點(diǎn)A重合,此時(shí)A點(diǎn)平移至A′點(diǎn),A′C與BC′相交于點(diǎn)H.如圖4所示,連接CC',試求CH的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某水果店一次性購(gòu)買(mǎi)A種水果的單價(jià)y(元)與購(gòu)買(mǎi)量x(千克)的函數(shù)關(guān)系如圖.
(1)下列關(guān)于三段函數(shù)圖象的說(shuō)法不正確的是( 。
A、第①段函數(shù)圖象表示數(shù)量不多于5千克時(shí),單價(jià)為10元.
B、第③段函數(shù)圖象表示數(shù)量不少于11千克時(shí),單價(jià)為8.8元.
C、第②段函數(shù)圖象可知:當(dāng)一次性數(shù)量多于5千克但不多于11千克時(shí),每多買(mǎi)1千克,單價(jià)就降低1.2元.
(2)求圖中第②段函數(shù)圖象的解析式,并指出x的取值范圍.
(3)某天老李計(jì)劃用90元去該店買(mǎi)A種水果,問(wèn)老李一次性(或最多)能買(mǎi)回多少千克A種水果?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】港珠澳大橋是中國(guó)境內(nèi)一座連接香港、珠海和澳門(mén)的橋隧工程,位于中國(guó)廣東省伶仃洋區(qū)域內(nèi),為珠江三角洲地區(qū)環(huán)線高速公路南環(huán)段,青州航道橋“中國(guó)結(jié)三地同心”主題的斜拉索塔如圖(1)所示.某數(shù)學(xué)興趣小組根據(jù)材料編制了如下數(shù)學(xué)問(wèn)題,請(qǐng)你解答.
如圖(2),BC,DE為主塔AB(主塔AB與橋面AC垂直)上的兩條鋼索,橋面上C、D兩點(diǎn)間的距離為16m,主塔上A、E兩點(diǎn)的距離為18.4m,已知BC與橋面AC的夾角為30°,DE與橋面AC的夾角為38°。求主塔AB的高.(結(jié)果精確到1米,參考數(shù)據(jù):sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD沿EF折疊,使頂點(diǎn)C恰好落在AB邊的C'處,點(diǎn)D落在點(diǎn)D'處,C'D'交線段AE于點(diǎn)G.
(1)求證:△BC'F∽△AGC';
(2)若C'是AB的中點(diǎn),AB=6,BC=9,求AG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在歌唱比賽中,一位歌手分別轉(zhuǎn)動(dòng)如下的兩個(gè)轉(zhuǎn)盤(pán)(每個(gè)轉(zhuǎn)盤(pán)都被分成3等份)一次,根據(jù)指針指向的歌曲名演唱兩首曲目.
(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)①時(shí),該轉(zhuǎn)盤(pán)指針指向歌曲“3”的概率是 ;
(2)若允許該歌手替換他最不擅長(zhǎng)的歌曲“3”,即指針指向歌曲“3”時(shí),該歌手就選擇自己最擅長(zhǎng)的歌曲“1”, 請(qǐng)用樹(shù)形圖或列表法中的一種,求他演唱歌曲“1”和“4”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】不透明的口袋里裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中紅球有2個(gè),藍(lán)球有1個(gè),現(xiàn)從中任意摸出一個(gè)是紅球的概率為.
(1)求袋中黃球的個(gè)數(shù);
(2)第一次摸出一個(gè)球(不放回),第二次再摸一個(gè)小球,請(qǐng)用畫(huà)樹(shù)狀圖或列表法求兩次摸到都是紅球的概率;
(3)若規(guī)定摸到紅球得5分,摸到黃球得3分,摸到藍(lán)球得1分,小明共摸6次小球(每次摸1個(gè)球,摸后放回)得20分,問(wèn)小明有哪幾種摸法?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,這是某水庫(kù)大壩截面示意圖,張強(qiáng)在水庫(kù)大壩頂CF上的瞭望臺(tái)D處,測(cè)得水面上的小船A的俯角為40°,若DE=3米,CE=2米,CF平行于水面AB,瞭望臺(tái)DE垂直于壩頂CF,迎水坡BC的坡度i=4:3,坡長(zhǎng)BC=10米,求小船A距坡底B處的長(zhǎng).(結(jié)果保留0.1米)(參考數(shù)據(jù):sin40°≈0.64,cos40°=0.77,tan40°≈0.84)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com