【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
組別 | 成績x分 | 頻數(shù)(人數(shù)) |
第1組 | 50≤x<60 | 6 |
第2組 | 60≤x<70 | 8 |
第3組 | 70≤x<80 | 14 |
第4組 | 80≤x<90 | a |
第5組 | 90≤x<100 | 10 |
請結(jié)合圖表完成下列各題:
(1)①求表中a的值;②頻數(shù)分布直方圖補(bǔ)充完整;
(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
(3)第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對抗練習(xí),且4名男同學(xué)每組分兩人,求小明與小強(qiáng)兩名男同學(xué)能分在同一組的概率.
【答案】
(1)解:①由題意和表格,可得
a=50﹣6﹣8﹣14﹣10=12,
即a的值是12;
②補(bǔ)充完整的頻數(shù)分布直方圖如下圖所示,
(2)解:∵測試成績不低于80分為優(yōu)秀,
∴本次測試的優(yōu)秀率是: ;
(3)解:設(shè)小明和小強(qiáng)分別為A、B,另外兩名學(xué)生為:C、D,
則所有的可能性為:(AB)、(AC)、(AD)、(BA)、(BC)、(BD)、(CA)、(CB)、(CD)、(DA)、(DB)、(DC),
所以小明和小強(qiáng)分在一起的概率為: .
【解析】(1)①根據(jù)題意和表中的數(shù)據(jù)可以求得a的值;②由表格中的數(shù)據(jù)可以將頻數(shù)分布表補(bǔ)充完整;(2)根據(jù)表格中的數(shù)據(jù)和測試成績不低于80分為優(yōu)秀,可以求得優(yōu)秀率;(3)根據(jù)題意可以求得所有的可能性,從而可以得到小明與小強(qiáng)兩名男同學(xué)能分在同一組的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊的邊長為2,現(xiàn)將等邊放置在平面直角坐標(biāo)系中,點(diǎn)B和原點(diǎn)重合,點(diǎn)C在x軸正方向上,直線交x軸于點(diǎn)D,交y軸于點(diǎn)E,且如圖,現(xiàn)將等邊從圖1的位置沿x軸正方向以每秒1個單位長度的速度移動,邊AB、AC分別與線段DE交于點(diǎn)G、如圖,同時點(diǎn)P從的頂點(diǎn)B出發(fā),以每秒2個單位長度的速度沿折線運(yùn)動當(dāng)點(diǎn)P運(yùn)動到C時即停止活動,也隨之停止移動,設(shè)平移的時間為.
試求直線DE的解析式;
當(dāng)點(diǎn)P在線段AC上運(yùn)動時,設(shè)點(diǎn)P與點(diǎn)H的距離為y,求y與t的函數(shù)關(guān)系式,并寫出定義域;
當(dāng)點(diǎn)P在線段AB上運(yùn)動時,中恰好有一個角的度數(shù)為,請直接寫出t的值,不必寫過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由;
(2)當(dāng)△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3 時,求線段DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線為直線AB、CD之間的一點(diǎn).
如圖1,若,則 ______ ;
如圖2,若,則 ______ ;
如圖3,若,則、與之間有什么等量關(guān)系?請猜想證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.
(1)如圖①,若AB∥CD,點(diǎn)P在AB,CD外部,則有 ∠B=∠BOD,又因?yàn)椤螧OD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.將點(diǎn)P移到AB,CD內(nèi)部,如圖②,以上結(jié)論是否成立?若成立,請說明理由;若不成立,則∠BPD,∠B,∠D之間有何數(shù)量關(guān)系?請證明你的結(jié)論;
(2)在圖②中,將直線AB繞點(diǎn)B逆時針方向旋轉(zhuǎn)一定角度交直線CD于點(diǎn)Q,如圖③,則∠BPD,∠B,∠D,∠BQD之間有何數(shù)量關(guān)系?(不需證明)
(3)根據(jù)(2)的結(jié)論,求圖④中∠A+∠B+∠C+∠D+∠E的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°
(1) 求證:四邊形ABCD是矩形
(2) 若DE⊥AC交BC于E,∠ADB∶∠CDB=2∶3,則∠BDE的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E是BC的中點(diǎn),BE=,AD=.
(1)求線段BC、AB的長;
(2)求線段AC的長;
(3)求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD的對角線AC,BD相交于點(diǎn)O,E,F(xiàn)分別是AD,CD邊上的中點(diǎn),連接EF.若EF= ,BD=2,則菱形ABCD的面積為( )
A.2
B.
C.6
D.8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com