【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A0,2),拋物線ymx2+4mx+5m的對稱軸與x軸交于點(diǎn)B

1)求點(diǎn)B的坐標(biāo);

2)當(dāng)m0時(shí),過A點(diǎn)作直線l平行于x軸,與拋物線交于C、D兩點(diǎn)(CD左側(cè)),CD橫坐標(biāo)分別為x1、x2,且x2x12,求拋物線的解析式;

3)若拋物線與線段AB恰只有一個(gè)公共點(diǎn),則請結(jié)合函數(shù)圖象,直接寫出m的取值范圍.

【答案】(1)(﹣2,0);(2) yx2+4x+5;(3) 0<mm

【解析】

1)利用對稱軸公式求得對稱軸,即可求得B的坐標(biāo);

2)先根據(jù)對稱軸求出x1+x2=﹣4,結(jié)合x2x12,即可求出x1x2的值,從而可求出C(﹣3,2),D(﹣1,2),然后用待定系數(shù)法求解即可;

3)當(dāng)m<0時(shí)不合題意;當(dāng)m0,分兩種情況討論,結(jié)合圖象即可求得.

解:(1拋物線ymx2+4mx+5m的對稱軸為直線x=﹣=﹣2,

對稱軸與x軸交點(diǎn)B的坐標(biāo)為(﹣2,0);

2)由題意可知,C、D兩點(diǎn)關(guān)于拋物線的對稱軸對稱,且CD的左邊,

=﹣2,

x1+x2=﹣4

x2x12,

x1=﹣3,x2=﹣1

A0,2),且過A的直線l平行于x軸,

C(﹣3,2),D(﹣1,2),

D點(diǎn)代入拋物線,得m4m+5m2,

解,得m1,

拋物線的解析式為yx2+4x+5;

3A0,2),B(﹣2,0),

線段ABx軸上方,直線ABx+2,

函數(shù)ymx2+4mx+5m中,=(4m24m5m=﹣4m20,

拋物線與x軸無交點(diǎn),

當(dāng)m0時(shí),拋物線開口向下,頂點(diǎn)在x軸下方,與線段AB為交點(diǎn),

當(dāng)m0時(shí),拋物線開口向上,頂點(diǎn)在x軸上方,若拋物線與AB有一個(gè)交點(diǎn),有兩種情況:

如圖1,拋物線與AB相切時(shí),則mx2+4mx+5mx+2整理得,mx2+4m1x+5m20,

=(4m124m5m2)=0,解得mm=﹣(舍去),

拋物線與y軸的交點(diǎn)在O、A之間,即05m2,解得0m,

綜上所述,m的取值范圍是 0mm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,EBC邊一點(diǎn),DE平分∠ADC,EF∥DCAD邊于點(diǎn)F,連結(jié)BD.

(1)求證:四邊形EFCD是正方形;

(2)若BE=1,ED=2,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC 在平面直角坐標(biāo)系中的位置如圖所示,其中每 個(gè)小正方形的邊長為 1 個(gè)單位長度.

1)畫出△ABC 關(guān)于原點(diǎn) O 的中心對稱圖形△A1B1C1,并寫出點(diǎn) A1 的坐標(biāo);

2)將△ABC 繞點(diǎn) C 順時(shí)針旋轉(zhuǎn) 90°得到△A2B2C,畫出△A2B2C,求在旋轉(zhuǎn)過程中,點(diǎn) A 所經(jīng)過的路徑長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形DEFGABC的內(nèi)接正方形,D、G分別在AB、AC上,E、FBC上,AHABC的高,已知BC20,AH16,求正方形DEFG的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx24x+3

1)用配方法將yx24x+3化成yaxh2+k的形式;

2)在平面直角坐標(biāo)系中,畫出這個(gè)二次函數(shù)的圖象;

3)寫出當(dāng)x為何值時(shí),y0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖拋物線y=ax2+3ax+ca0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB,


1)求拋物線的解析式;
2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;
3)若點(diǎn)Ex軸上,點(diǎn)P在拋物線上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)DAB的中點(diǎn),DE⊥BC,垂足為點(diǎn)E,連接CD

1)如圖1DEBC的數(shù)量關(guān)系是   ;

2)如圖2,若P是線段CB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)BC重合),連接DP,將線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,連接BF,請猜想DE、BF、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)若點(diǎn)P是線段CB延長線上一動(dòng)點(diǎn),按照(2)中的作法,請?jiān)趫D3中補(bǔ)全圖形,并直接寫出DE、BF、BP三者之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲、乙、丙三人組成的籃球訓(xùn)練小組,他們?nèi)酥g進(jìn)行互相傳球練習(xí),籃球從一個(gè)人手中隨機(jī)傳到另外一個(gè)人手中計(jì)作傳球一次,共連續(xù)傳球三次.

1)若開始時(shí)籃球在甲手中,則經(jīng)過第一次傳球后,籃球落在丙的手中的概率是  ;

2)若開始時(shí)籃球在甲手中,求經(jīng)過連續(xù)三次傳球后,籃球傳到乙的手中的概率.(請用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于A(﹣1,0),B30)兩點(diǎn),與y軸交于點(diǎn)C0,3.

1)求此拋物線所對應(yīng)函數(shù)的表達(dá)式;

2)若M 是拋物線對稱軸上一個(gè)動(dòng)點(diǎn),求當(dāng) MA+MC 的值最小時(shí) M 點(diǎn)坐標(biāo);

3)若拋物線的頂點(diǎn)為D,在其對稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得PCD為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案