【題目】中華文化,源遠流長,在文學方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”,某中學為了了解學生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題做法全校學生中進行了抽樣調(diào)查,根據(jù)調(diào)查結果繪制城如圖所示的兩個不完整的統(tǒng)計圖,請結合圖中信息解決下列問題:
(1)本次調(diào)查所得數(shù)據(jù)的眾數(shù)是 部,中位數(shù)是 部,扇形統(tǒng)計圖中“1部”所在扇形的圓心角為 度.
(2)請將條形統(tǒng)計圖補充完整;
(3)沒有讀過四大古典名著的兩名學生準備從四大固定名著中各自隨機選擇一部來閱讀,則他們選中同一名著的概率為 .
【答案】(1)1,2,126;(2)作圖見解析;(3).
【解析】
試題分析:(1)先根據(jù)調(diào)查的總人數(shù),求得1部對應的人數(shù),進而得到本次調(diào)查所得數(shù)據(jù)的眾數(shù)以及中位數(shù),根據(jù)扇形圓心角的度數(shù)=部分占總體的百分比×360°,即可得到“1部”所在扇形的圓心角;
(2)根據(jù)1部對應的人數(shù)為40﹣2﹣10﹣8﹣6=14,即可將條形統(tǒng)計圖補充完整;
(3)根據(jù)樹狀圖所得的結果,判斷他們選中同一名著的概率.
試題解析:(1)調(diào)查的總人數(shù)為:10÷25%=40,∴1部對應的人數(shù)為40﹣2﹣10﹣8﹣6=14,∴本次調(diào)查所得數(shù)據(jù)的眾數(shù)是1部,∵2+14+10=26>21,2+14<20,∴中位數(shù)為2部,扇形統(tǒng)計圖中“1部”所在扇形的圓心角為:×360°=126°;
故答案為:1,2,126;
(2)條形統(tǒng)計圖如圖所示:
(3)將《西游記》、《三國演義》、《水滸傳》、《紅樓夢》分別記作A,B,C,D,畫樹狀圖可得:
共有16種等可能的結果,其中選中同一名著的有4種,故P(兩人選中同一名著)==.故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】(1)(問題發(fā)現(xiàn))如圖1,在Rt△ABC中,AB=AC,∠BAC=90°,點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,請判斷線段BE與AF的數(shù)量關系并寫出推斷過程;
(2)(拓展研究)在(1)的條件下,如果正方形CDEF繞點C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關系有無變化?請僅就圖2的情形給出證明;
(3)(結論運用)在(1)(2)的條件下,若△ABC的面積為2,當正方形CDEF旋轉(zhuǎn)到B,E,F三點在同一直線上時,請直接寫出線段AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,點E、F在對角線AC上,且AE=CF,
(1)證明:△ABE≌△ADE;
(2)證明:四邊形BFDE是菱形;
(3)若AC=4,BD=8,AE=,請求出四邊形BFDE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】貴陽市某消防支隊在一幢居民樓前進行消防演習,如圖所示,消防官兵利用云梯成功救出在C處的求救者后,發(fā)現(xiàn)在C處正上方17米的B處又有一名求救者,消防官兵立刻升高云梯將其救出,已知點A與居民樓的水平距離是15米,且在A點測得第一次施救時云梯與水平線的夾角∠CAD=60°,求第二次施救時云梯與水平線的夾角∠BAD的度數(shù)(結果精確到1°).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(-1,0),對稱軸為直線x=2,下列結論:(1)4a+b=0;(2)abc>0;(3)b2-4ac>0;(4)5a+c=0;(5)若m≠2,則m(am+b)>2(2a+b),其中正確的結論有______(填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=﹣x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù)(如圖所示),請你在圖中畫出這個新圖象,當直線y=﹣x+m與新圖象有4個交點時,m的取值范圍是( 。
A. ﹣<m<3 B. ﹣<m<2 C. ﹣2<m<3 D. ﹣6<m<﹣2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,點E是AC的中點.
(1)試判斷直線DE與⊙O的位置關系,并說明理由;
(2)若⊙O的半徑為2,∠B=50°,AC=4.8,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c上部分點的橫坐標x,縱坐標y的對應值如下表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | … | ﹣6 | 0 | 4 | 6 | 6 | … |
從上表可知,下列說法正確的有多少個
①拋物線與x軸的一個交點為(﹣2,0);
②拋物線與y軸的交點為(0,6);
③拋物線的對稱軸是直線x=;
④拋物線與x軸的另一個交點為(3,0);
⑤在對稱軸左側,y隨x增大而減少.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個盒子里有完全相同的三個小球,球上分別標上數(shù)字-1、1、2.隨機摸出一個小球(不放回),其數(shù)字記為p,再隨機摸出另一個小球,其數(shù)字記為q,則p,q使關于x的方程x2+px+q=0有實數(shù)根的概率是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com