精英家教網 > 初中數學 > 題目詳情
在四邊形中,對角線AC與BD交于點O,△ABO≌△CDO.
(1)求證:四邊形為平行四邊形;
(2)若∠ABO=∠DCO,求證:四邊形為矩形.
解:(1)證明:∵△ABO≌△CDO
∴AO=CO,BO=DO
∴AC、BD互相平分
∴四邊形ABCD是平行四邊形
(2)證明:∵四邊形ABCD是平行四邊形
∴AB∥CD,∴∠ABO=∠CDO
∵∠ABO=∠DCO,
∴∠DCO =∠CDO
∴CO=DO
∵△ABO≌△CDO
∴AO=CO,BO=DO   ∴AO=CO=BO=DO
即AC=BD
∴□ABCD是矩形
(1)利用全等三角形的性質求得AO=CO,BO=DO,根據平行四邊形的判定求證
(2)證得△ABO≌△CDO,再根據矩形的性質判定
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:填空題

如圖,MN是正方形ABCD的一條對稱軸,點P是直線MN上的一個動點,當PC+PD最小時,
∠PCD=_________°.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

點E為正方形ABCD的BC邊的中點,動點F在對角線AC上運動,連接BF、EF.設AF=x,△BEF的周長為y,那么能表示y與x的函數關系的圖象大致是
 

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

四邊形ABCD的對角線相交于點O,能判定四邊形是正方形的條件是(    )
A.AC=BD,AB=CD,AB∥CDB.AO=BO=CO=DO,AC⊥BD
C.AD∥BC,∠A=∠CD.AO=CO,BO=DO,AB=BC

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

下列命題是真命題的是【   】
A.如果|a|=1,那么a=1B.一組對邊平行的四邊形是平行四邊形
C.如果a是有理數,那么a是實數D.對角線相等的四邊形是矩形

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

依次連接菱形各邊中點所得到的四邊形是          

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

一個長方形的長與寬分別為cm和16cm,繞它的對稱中心旋轉一周所掃過的面積是 ;旋轉90度時,掃過的面積是            

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

)如圖,Rt△ABC中,C= 90o,以斜邊AB為邊向外作正方形 ABDE,且正方形對角線交于點D,連接OC,已知AC=5,OC=6,則另一直角邊BC的長為    ▲   

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,在平行四邊形中,,交 的延長線于,若,厘米,則           厘米.

查看答案和解析>>

同步練習冊答案