【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點(diǎn)F作FG⊥CA,交CA的延長線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結(jié)論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

【答案】D

【解析】試題解析:∵四邊形ADEF為正方形,

∴∠FAD=90°,AD=AF=EF,

∴∠CAD+FAG=90°,

FGCA,

∴∠GAF+AFG=90°,

∴∠CAD=AFG,

FGAACD中,

∴△FGA≌△ACD(AAS),

AC=FG,①正確;

BC=AC,

FG=BC,

∵∠ACB=90°,F(xiàn)GCA,

FGBC,

∴四邊形CBFG是矩形,

∴∠CBF=90°,SFAB=FBFG=S四邊形CBFG,②正確;

CA=CB,C=CBF=90°,

∴∠ABC=ABF=45°,③正確;

∵∠FQE=DQB=ADC,E=C=90°,

∴△ACD∽△FEQ,

AC:AD=FE:FQ,

ADFE=AD2=FQAC,④正確;

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(7分)如圖,ABC中,ACB=90°,D.E分別是BC、BA的中點(diǎn),聯(lián)結(jié)DE,F(xiàn)在DE延長線上,且AF=AE.

(1)求證:四邊形ACEF是平行四邊形;

(2)若四邊形ACEF是菱形,求B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是O的直徑,PA切O于點(diǎn)A,點(diǎn)B是O上的一點(diǎn),且∠BAC=30°,∠APB=60°.

(1)求證:PB是O的切線;

(2)O的半徑為2,求弦AB及PA,PB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長方形OACB的頂點(diǎn)A、B分別在x軸與y軸上,已知OA=6,OB=10.點(diǎn)Dy軸上一點(diǎn),其坐標(biāo)為(0,2),點(diǎn)P從點(diǎn)A出發(fā)以每秒2個單位的速度沿線段AC﹣CB的方向運(yùn)動,當(dāng)點(diǎn)P與點(diǎn)B重合時停止運(yùn)動,運(yùn)動時間為t秒.

(1)當(dāng)點(diǎn)P經(jīng)過點(diǎn)C時,求直線DP的函數(shù)解析式;

(2)①求△OPD的面積S關(guān)于t的函數(shù)解析式;

②如圖②,把長方形沿著OP折疊,點(diǎn)B的對應(yīng)點(diǎn)B′恰好落在AC邊上,求點(diǎn)P的坐標(biāo).

(3)點(diǎn)P在運(yùn)動過程中是否存在使△BDP為等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形OBCD中的三個頂點(diǎn)在⊙O上,點(diǎn)A是⊙O上的一個動點(diǎn)(不與點(diǎn)B、C、D重合)。若四邊形OBCD是平行四邊形時,那么的數(shù)量關(guān)系是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮利用三張卡片做游戲,卡片上分別寫有A,B,B.這些卡片除字母外完全相同,從中隨機(jī)摸出一張,記下字母后放回,充分洗勻后,再從中摸出一張,如果兩次摸到卡片字母相同則小明勝,否則小亮勝,這個游戲?qū)﹄p方公平嗎?請說明現(xiàn)由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖某野生動物園分 A、B 兩個園區(qū).如圖是該動物園的通路示意圖,小明進(jìn)入入口后,任選一條通道.

(1)他進(jìn) A 園區(qū)或 B 園區(qū)的可能性哪個大?請說明理由(利用樹狀圖或列表來求解);

(2)求小明從中間通道進(jìn)入 A 園區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)衢州市統(tǒng)計(jì)局發(fā)布的統(tǒng)計(jì)數(shù)據(jù)顯示,衢州市近5年國民生產(chǎn)總值數(shù)據(jù)如圖1所示,2016年國民生產(chǎn)總值中第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè)所占比例如圖2所示。

請根據(jù)圖中信息,解答下列問題:

(1)求2016年第一產(chǎn)業(yè)生產(chǎn)總值(精確到1億元);

(2)2016年比2015年的國民生產(chǎn)總值增加了百分之幾(精確到1%)?

(3)若要使2018年的國民生產(chǎn)總值達(dá)到1573億元,求2016年至2018年我市國民生產(chǎn)總值平均年增長率(精確到1%)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在等腰ABC中,ABAC,ADBC于點(diǎn)D,以AC為邊作等邊ACE,直線BE交直線AD于點(diǎn)F.如圖,60°≤BAC≤120°,ACFABC在直線AC的同側(cè).

(1)①補(bǔ)全圖形;

②∠EAF+CEF   

(2)猜想線段FAFBFE的數(shù)量關(guān)系,并證明你的結(jié)論;

(3)若BC=2,則AF的最大值為   

查看答案和解析>>

同步練習(xí)冊答案