【題目】已知,在等腰△ABC中,AB=AC,AD⊥BC于點(diǎn)D,以AC為邊作等邊△ACE,直線BE交直線AD于點(diǎn)F.如圖,60°≤∠BAC≤120°,△ACF與△ABC在直線AC的同側(cè).
(1)①補(bǔ)全圖形;
②∠EAF+∠CEF= ;
(2)猜想線段FA,FB,FE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若BC=2,則AF的最大值為 .
【答案】(1)①圖形如圖 1 所示;②結(jié)論:∠EAF+∠CEF=60°,理由見(jiàn)解析;(2)結(jié)論:FA=FE+FB.理由見(jiàn)解析;(3)AF 的最大值為.
【解析】
(1)①根據(jù)要求畫出圖形,如圖1所示;
②結(jié)論:∠EAF+∠CEF=60°如圖1中,以A為圓心,AB為半徑畫圓.作AH⊥BE于H.首先證明∠EBC=∠FAH=30°,根據(jù)三角形的內(nèi)角和定理和外角的性質(zhì)即可解決問(wèn)題;
(2)結(jié)論:FA=FE+FB.如圖2中,在FA上取一點(diǎn)K,使得FK=FE,連接EK.只要證明△AEK≌△CEF(SAS),即可解決問(wèn)題;
(3)因?yàn)?/span>60°≤∠BAC≤120°,所以觀察圖象可知,當(dāng)∠BAC=60°時(shí),AF的值最大,求出AD,DF即可解決問(wèn)題;
(1)①圖形如圖 1 所示;
②結(jié)論:∠EAF+∠CEF=60°
理由:如圖 1 中,以 A 為圓心,AB 為半徑畫圓.作 AH⊥BE 于 H.
∵AB=AC=AE,
∴B,E,C 在⊙A 上,
∵△AEC 是等邊三角形,
∴∠EAC=60°,
∴∠EBC=EAC=30°,
∵AB=AE,AH⊥BE,
∴∠EAH= ∠BAE,
∵∠BCE= ∠BAE,
∴∠BCE=∠EAH,
∴AD⊥BC,
∴∠BDF=∠AHF=90°,∠BFD=60°,
∴∠HAF=30°,
∴∠EAF+∠CEF=∠EAF+∠EBC+∠BCE=∠EAF+∠EAH+∠EBC=30°+30°=60°.
(2)結(jié)論:FA=FE+FB.
理由:如圖 2 中,在 FA 上取一點(diǎn) K,使得 FK=FE,連接 EK.
∵FE=CK,∠EFK=60°,
∴△EFK 是等邊三角形,
∴EK=EF,∠EKF=∠KEF=60°,
∵∠AEC=∠KEF=60°,
∴∠AEK=∠CEF,
∵AE=EC,EK=EF,
∴△AEK≌△CEF(SAS),
∴AK=FC,
∵AD 垂直平分線段 BC,
∴FB=CF,
∴FA=FK+AK=FE+FC=FE+FB.
如圖 3 中.
∵60°≤∠BAC≤120°,
觀察圖象可知,當(dāng)∠BAC=60°時(shí),AF 的值最大, 此時(shí)∵AB=AC=BC=2,AF⊥BC,
∴AD=ABsin60°=,DF=BDtan30°= ,
∴AF=+= ,
∴AF 的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過(guò)點(diǎn)F作FG⊥CA,交CA的延長(zhǎng)線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的內(nèi)心,將△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后,I的對(duì)應(yīng)點(diǎn)I′的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半圓O的直徑DE=10cm,△ABC中,∠ACB=90°,∠ABC=30°,BC=10cm,半圓O以1cm/s的速度從右到左運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,D、E點(diǎn)始終在直線BC上,設(shè)運(yùn)動(dòng)時(shí)間為t(s),當(dāng)t=0(s)時(shí),半圓O在△ABC的右側(cè),OC=6cm,那么,當(dāng)t為_____s時(shí),△ABC的一邊所在直線與半圓O所在的圓相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)B的坐標(biāo)為(1,0)
(1)在圖l中畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1;
(2)在圖2中,以點(diǎn)O為位似中心,將△ABC放大,使放大后的△A2B2C2與△ABC的對(duì)應(yīng)邊的比為2:1(畫出一種即可). 直接寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是雙曲線y=(x>0)上的一動(dòng)點(diǎn),過(guò)A作AC⊥y軸,垂足為點(diǎn)C,作AC的垂直平分線交雙曲線于點(diǎn)B,交x軸于點(diǎn)D.當(dāng)點(diǎn)A在雙曲線上從左到右運(yùn)動(dòng)時(shí),對(duì)四邊形ABCD的面積的變化情況,小明列舉了四種可能:
①逐漸變。
②由大變小再由小變大;
③由小變大再由大變;
④不變.
你認(rèn)為正確的是_____.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)y=(k≠0)的圖象經(jīng)過(guò)點(diǎn)A(﹣2,m),過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,且△AOB的面積為4.
(Ⅰ)求k和m的值;
(Ⅱ)設(shè)C(x,y)是該反比例函數(shù)圖象上一點(diǎn),當(dāng)1≤x≤4時(shí),求函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為美化環(huán)境,某校計(jì)劃在一塊長(zhǎng)為60米,寬為40米的長(zhǎng)方形空地上修建一個(gè)長(zhǎng)方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為a米.
(1)當(dāng)a=10米時(shí),花圃的面積=
(2)通道的面積與花圃的面積之比能否恰好等于3:5,如果可以,求出此時(shí)通道的寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)y=(k≠0)的圖象經(jīng)過(guò)點(diǎn)A(﹣2,m),過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,且△AOB的面積為4.
(Ⅰ)求k和m的值;
(Ⅱ)設(shè)C(x,y)是該反比例函數(shù)圖象上一點(diǎn),當(dāng)1≤x≤4時(shí),求函數(shù)值y的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com