【題目】如圖,已知E、F分別是ABCD的邊BC、AD上的點(diǎn),且BE=DF.
(1)求證:四邊形AECF是平行四邊形;
(2)若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長(zhǎng)為4米.
(1)求新傳送帶AC的長(zhǎng)度;
(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)4米的貨物MNQP是否需要挪走,并說明理由.(說明:(1)(2)的計(jì)算結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73, ≈2.24, ≈2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①2a+b=0;②a+c>b;③拋物線與x軸的另一個(gè)交點(diǎn)為(3,0);④abc>0.其中正確的結(jié)論是(填寫序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是AB延長(zhǎng)線上一點(diǎn),BC=OB,CE是⊙O的切線,切點(diǎn)為D,過點(diǎn)A作AE⊥CE,垂足為E,則CD:DE的值是( )
A.
B.1
C.2
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C,D都在⊙O上, 的度數(shù)等于84°,CA是∠OCD的平分線,則∠ABD+∠CAO=°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=kx2+(2k+1)x+1(k為實(shí)數(shù))
(1)寫出其中的兩個(gè)特殊函數(shù),使它們的圖象不全是拋物線,并在同一直角坐標(biāo)系中,用描點(diǎn)法畫出這兩個(gè)特殊函數(shù)的圖象;
(2)根據(jù)所畫圖象,猜想出:對(duì)任意實(shí)數(shù)k,函數(shù)的圖象都具有的特征,并給予證明;
(3)對(duì)任意負(fù)實(shí)數(shù)k,當(dāng)x<m時(shí),y隨著x的增大而增大,試求出m的一個(gè)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+ 與y軸相交于點(diǎn)A,點(diǎn)B與點(diǎn)O關(guān)于點(diǎn)A對(duì)稱
(1)填空:點(diǎn)B的坐標(biāo)是;
(2)過點(diǎn)B的直線y=kx+b(其中k<0)與x軸相交于點(diǎn)C,過點(diǎn)C作直線l平行于y軸,P是直線l上一點(diǎn),且PB=PC,求線段PB的長(zhǎng)(用含k的式子表示),并判斷點(diǎn)P是否在拋物線上,說明理由;
(3)在(2)的條件下,若點(diǎn)C關(guān)于直線BP的對(duì)稱點(diǎn)C′恰好落在該拋物線的對(duì)稱軸上,求此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com