【題目】如圖,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,則∠EFC的度數(shù)為( )
A.35°B.40°C.45°D.60°
【答案】C
【解析】
根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AE=BE,然后求出△ABE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)求出∠BAE=∠ABE=45°,再根據(jù)等腰三角形兩底角相等求出∠ABC,然后求出∠CBE,根據(jù)等腰三角形三線合一的性質(zhì)可得BF=CF,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得BF=EF,根據(jù)等邊對(duì)等角求出∠BEF=∠CBE,然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解.
∵DE垂直平分AB,
∴AE=BE,
∵BE⊥AC,
∴△ABE是等腰直角三角形,
∴∠BAE=∠ABE=45°,
又∵AB=AC,
∴∠ABC=(180°-∠BAC)=(180°-45°)=67.5°,
∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°,
∵AB=AC,AF⊥BC,
∴BF=CF,
∵EF=BC(直角三角形斜邊中線等于斜邊的一半),
∴BF=EF=CF,
∴∠BEF=∠CBE=22.5°,
∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點(diǎn)的坐標(biāo)分別為(﹣2,2)、(1,8).
(1)求三角形ABO的面積;
(2)若y軸上有一點(diǎn)M,且三角形MAB的面積為10,求M點(diǎn)的坐標(biāo);
(3)如圖,把直線AB以每秒2個(gè)單位的速度向右平移,問經(jīng)過多少秒后,該直線與y軸交于點(diǎn)(0,﹣2)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在已知的△ABC中,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn)M,N;②作直線MN交AB于點(diǎn)D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為( )
A. 90°B. 95°C. 100°D. 105°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AF分別與BD、CE交于點(diǎn)G、H,∠1=54°,∠2=126°.
(1)求證:BD∥CE;
(2)若AC⊥CE于C,交BD于B,FD⊥BD于D,交CE于E,探索∠A與∠F的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計(jì)算:
1×2×3×4+1=________;
2×3×4×5+1=_______;
3×4×5×6+1=_______;
4×5×6×7+1=________;
(2)觀察上述計(jì)算的結(jié)果,指出他們的共同特性;
(3)以上特性,對(duì)于任意給出的四個(gè)連續(xù)自然數(shù)的積與1的和仍具備嗎?試證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子里裝有四個(gè)小球,球上分別標(biāo)有,,0,1四個(gè)數(shù)字,這些小球除數(shù)字外都相同.
如果從袋中任意摸出一個(gè)小球,那么小球上的數(shù)字標(biāo)有““的概率是______
甲、乙兩人玩“猜數(shù)字”游戲,甲先從袋中任意摸出一個(gè)小球,將小球上的數(shù)字記為m,再由乙猜這個(gè)小球上的數(shù)字,記為如果m,n滿足,那么就稱甲、乙兩人“心有靈犀”請(qǐng)用列表法或畫樹狀圖法求兩人“心有靈犀”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某工藝廠設(shè)計(jì)了一款成本為10元件的工藝品投放市場(chǎng)進(jìn)行試銷,經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)元件 | 20 | 30 | 40 | 50 | ||
每天銷售量件 | 500 | 400 | 300 | 200 |
猜一猜y是x的什么函數(shù)關(guān)系?并求出此函數(shù)的關(guān)系式;
若用元表示工藝廠試銷該工藝品每天獲得的利潤(rùn),試求元與/span>元件之間的函數(shù)關(guān)系式.
若該工藝品的每天的總成本不能超過2500元,那么銷售單價(jià)定為多少元時(shí),工藝廠試銷工藝品每天獲得的利潤(rùn)最大,最大是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,△ABC中,∠BAC=90°,AB=AC,分別過點(diǎn)B、C作經(jīng)過點(diǎn)A的直線l的垂線段BD、CE,垂足分別D、E.
(1)求證:DE=BD+CE.
(2)如果過點(diǎn)A的直線經(jīng)過∠BAC的內(nèi)部,那么上述結(jié)論還成立嗎?請(qǐng)畫出圖形,直接給出你的結(jié)論(不用證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)A(t,1)是平面直角坐標(biāo)系中第一象限的點(diǎn),點(diǎn)B,C分別是y軸負(fù)半軸和x軸正半軸上的點(diǎn),連接AB,AC,BC.
(1)如圖1,若OB=1,OC =,且A,B,C在同一條直線上,求t的值;
(2)如圖 2,當(dāng) t =1,∠ACO +∠ACB = 180°時(shí),求 BC + OC -OB 的值;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com