【題目】如圖,四邊形ABCD是邊長(zhǎng)為a的正方形,點(diǎn)G、E分別是邊AB、BC的中點(diǎn),∠AEF=90°,且EF交正方形外角的平方線CF于點(diǎn)F.
(1)證明:△AGE≌△ECF;
(2)求△AEF的面積.

【答案】
(1)證明∵G,E分別是正方形ABCD的邊AB,BC的中點(diǎn),

∴AG=GB=BE=EC,且∠AGE=180°﹣45°=135°;

又∵CF是∠DCH的平分線,

∴∠DCF=∠FCH=45°,

∠ECF=90°+45°=135°;

在△AGE和△ECF中,

;

∴△AGE≌△ECF


(2)解:由△AGE≌△ECF,得AE=EF;

又∵∠AEF=90°,

∴△AEF是等腰直角三角形;

∵AB=a,E為BC中點(diǎn),

∴BE= BC= AB= a,

根據(jù)勾股定理得:AE= = a,

∴SAEF= a2


【解析】(1)根據(jù)正方形的性質(zhì),易證得AG=EC,∠AGE=∠ECF=135°;再加上(1)得出的相等角,可由ASA判定兩個(gè)三角形全等;(2)在Rt△ABE中,根據(jù)勾股定理易求得AE2;由(2)的全等三角形知:AE=EF,即△AEF是等腰Rt△,因此其面積為AE2的一半,由此得解.
【考點(diǎn)精析】掌握正方形的性質(zhì)是解答本題的根本,需要知道正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某面粉加工廠加工的面粉,用每袋可裝10g面粉的袋子裝了200袋經(jīng)過(guò)稱重,質(zhì)量超過(guò)標(biāo)準(zhǔn)質(zhì)量10kg的用正數(shù)表示,質(zhì)量低于標(biāo)準(zhǔn)質(zhì)量10kg的用負(fù)數(shù)表示,結(jié)果記錄如下

與標(biāo)準(zhǔn)質(zhì)量的偏差(kg)

1.5

1

0.5

0

0.5

1

2

袋數(shù)()

40

30

10

25

40

20

35

(1)求這批面粉的總質(zhì)量;

(2)如果100kg小麥加工80kg面粉,那么這批面粉是由多少千克小麥加工的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一名射擊運(yùn)動(dòng)員連續(xù)打靶8次,命中的環(huán)數(shù)如圖所示,則命中環(huán)數(shù)的眾數(shù)與中位數(shù)分別為(
A.9環(huán)與8環(huán)
B.8環(huán)與9環(huán)
C.8環(huán)與8.5環(huán)
D.8.5環(huán)與9環(huán)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠C=90°,BC=4cm,AC=3cm,把△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到△A1B1C1(如圖所示),則線段AB所掃過(guò)的面積為(
A.5
B. πcm2
C. πcm2
D.5πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩建筑物的水平距離BC為18m,從A點(diǎn)測(cè)得D點(diǎn)的俯角α為30°,測(cè)得C點(diǎn)的俯角β為60°.則建筑物CD的高度為m(結(jié)果不作近似計(jì)算).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的對(duì)角線ACBD互相垂直,若AB=3,BC=4,CD=5,則AD的長(zhǎng)為( 。

A. 3 B. 4 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小強(qiáng)從熱氣球上測(cè)量一棟高樓頂部的傾角為30°,測(cè)量這棟高樓底部的俯角為60°,熱氣球與高樓的水平距離為45米,則這棟高樓高為多少(單位:米)( )

A.15
B.30
C.45
D.60

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市居民使用自來(lái)水按如下標(biāo)準(zhǔn)收費(fèi)(水費(fèi)按月繳納):

(1)當(dāng)a=2時(shí),某用戶一個(gè)月用了28 m3求該用戶這個(gè)月應(yīng)繳納的水費(fèi);

(2)設(shè)某戶月用水量為n 立方米當(dāng)n>20時(shí),則該用戶應(yīng)繳納的水費(fèi)________元(用含a、n的整式表示);

(3)當(dāng)a=2時(shí),甲、乙兩用戶一個(gè)月共用水40m3 已知甲用戶繳納的水費(fèi)超過(guò)了24,設(shè)甲用戶這個(gè)月用水xm3 試求甲、乙兩用戶一個(gè)月共繳納的水費(fèi)(用含x的整式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)計(jì)算:
(2)解方程:

查看答案和解析>>

同步練習(xí)冊(cè)答案