【題目】在任意三角形、銳角、長方形三種圖形中,有且只有一條對稱軸的是______.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)義務(wù)教育均衡發(fā)展要求泗縣政府從2014年至2017年共投資20.93億元對全縣所有學(xué)校進行全面改造,20.93億用科學(xué)記數(shù)法表示為( 。
A. 20.93×108 B. 2.093×109 C. 2.093×108 D. 0.2093×1010
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖某天上午9時,向陽號輪船位于A處,觀測到某港口城市P位于輪船的北偏西67.5°,輪船以21海里/時的速度向正北方向行駛,下午2時該船到達B處,這時觀測到城市P位于該船的南偏西36.9°方向,求此時輪船所處位置B與城市P的距離?(參考數(shù)據(jù):sin36.9°≈,tan36.9°≈,sin67.5°≈,tan67.5°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料并解答問題:
我們知道的幾何意義是在數(shù)軸上數(shù)對應(yīng)的點與原點的距離: ,也就是說, 表示在數(shù)軸上數(shù)與數(shù)0對應(yīng)點之間的距離;
這個結(jié)論可以推廣為表示在數(shù)軸上數(shù)和數(shù)對應(yīng)的點之間的距離;
例1解方程,容易看出,在數(shù)軸上與原點距離為2的點對應(yīng)的數(shù)為,即該方程的解為.
例2解不等式,如圖,在數(shù)軸上找出的解,即到1的距離為2的點對應(yīng)的數(shù)為,3,則的解集為或.
例3解方程由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1和的距離之和為5的對應(yīng)的的值.在數(shù)軸上,1和的距離為3,滿足方程的對應(yīng)的點在1的右邊或的左邊,若對應(yīng)的點在1的右邊,由下圖可以看出;同理,若對應(yīng)的點在的左邊,可得,故原方程的解是或.
回答問題:(只需直接寫出答案)
①解方程
②解不等式
③解方程
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果在等式10(x+3)=3(x+3)的兩邊同除以(x+3)就會得到10=3.我們知道10≠3,那么由此可以猜測x+3=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我縣開展的“陽光體育”跳繩活動中,為了了解初中學(xué)生跳繩活動的開展情況,隨機抽查了全縣七年級部分同學(xué)1分鐘跳繩的次數(shù),將抽查結(jié)果進行統(tǒng)計,并繪制兩個不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)本次共抽查了多少名學(xué)生?
(2)請補全頻數(shù)分布直方圖空缺部分,直接寫出扇形統(tǒng)計圖中跳繩次數(shù)范圍135≤x<155所在扇形的圓心角度數(shù);
(3)若本次抽查中,跳繩次數(shù)在125次以上(含125次)為優(yōu)秀,請你估計全縣8000名初中學(xué)生中有多少名學(xué)生的成績?yōu)閮?yōu)秀?
(4)請你根據(jù)以上信息,對我市開展的學(xué)生跳繩活動談?wù)勛约旱目捶ɑ蚪ㄗh.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩動點分別從正方形ABCD的頂點A、C同時沿正方形的邊開始移動,甲點依順時針方向環(huán)行,乙點依逆時針方向環(huán)行.若甲的速度是乙的速度的3倍,則它們第2015次相遇在哪條邊上( )
A. AB B. BC C. CD D. DA
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com