【題目】已知:如圖,直線y=-x+12分別交x軸、y軸于A、B點,將△AOB折疊,使A點恰好落在OB的中點C處,折痕為DE.
(1)求AE的長及sin∠BEC的值;
(2)求△CDE的面積.
【答案】(1)5,sin∠BEC=;(2)
【解析】
(1)如圖,作CF⊥BE于F點,由函數(shù)解析式可得點B,點A坐標,繼而可得∠A=∠B=45°,再根據(jù)中點的定義以及等腰直角三角形的性質(zhì)可得OC=BC=6,CF=BF=3,
設(shè)AE=CE=x,則EF=AB-BF-AE=12-3-x=9-x,在Rt△CEF中,利用勾股定理求出x的值即可求得答案;
(2)如圖,過點E作EM⊥OA于點M,根據(jù)三角形面積公式則可得S△CDE=S△AED=AD×AE,設(shè)AD=y,則CD=y,OD=12-y,在Rt△OCD中,利用勾股定理求出y,繼而可求得答案.
(1)如圖,作CF⊥BE于F點,
由函數(shù)解析式可得點B(0,12),點A(12,0),∠A=∠B=45°,
又∵點C是OB中點,
∴OC=BC=6,CF=BF=3,
設(shè)AE=CE=x,則EF=AB-BF-AE=12-3-x=9-x,
在Rt△CEF中,CE2=CF2+EF2,即x2=(9-x)2+(3)2,
解得:x=5,
故可得sin∠BEC=,AE=5;
(2)如圖,過點E作EM⊥OA于點M,
則S△CDE=S△AED=ADEM=AD×AEsin∠EAM=ADAE×sin45°=AD×AE,
設(shè)AD=y,則CD=y,OD=12-y,
在Rt△OCD中,OC2+OD2=CD2,即62+(12-y)2=y2,
解得:y=,即AD=,
故S△CDE=S△AED=AD×AE=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,sinA=,BC=8,點D是AB的中點,過點B作CD的垂線,垂足為點E.
(1)求線段CD的長;
(2)求cos∠ABE的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是圓上任意一點,點D是AC中點,OD交AC于點E,BD交AC于點F,若BF=1.25DF,則tan∠ABD的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=12,BC=5,將△ABC繞AB上的點O順時針旋轉(zhuǎn)90°,得到△A'B'C',連結(jié)BC'.若BC'∥A'B',則OB的值為( )
A. B. 5C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接正三角形,點P在劣弧BC上(不與點B,C重合).
(1)如圖1,若PA是⊙O的直徑,則PA______PB+PC(請?zhí)?/span>“>”,“=”或“<”)
(2)如圖2,若PA不是⊙O的直徑,那么(1)中的結(jié)論是否仍成立?如果不成立,請說明理由:如果成立,請給出證明.
(3)如圖3,若四邊形ACPB的面積是16.
①求PA的長;
②設(shè)y=S△PCB+S△PCA,求當PC為何值時,y的值最大?并直接寫出此時⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,P是BA延長線上一點,CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足為D
(1)求證:PC是⊙O的切線;
(2)求證:;
(3)過點A作AE∥PC交⊙O于點E,交CD于點F,連接BE,若sin∠P=,CF=5,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點C作直線l∥AB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結(jié)CD,設(shè)直線PB與直線AC交于點E.
(1)求∠BAC的度數(shù);
(2)當點D在AB上方,且CD⊥BP時,求證:PC=AC;
(3)在點P的運動過程中
①當點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);
②設(shè)⊙O的半徑為6,點E到直線l的距離為3,連結(jié)BD,DE,直接寫出△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展校園足球運動,某縣城區(qū)四校決定聯(lián)合購買一批足球運動裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.
(1)求每套隊服和每個足球的價格是多少?
(2)若城區(qū)四校聯(lián)合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費用;
(3)假如你是本次購買任務(wù)的負責人,你認為到哪家商場購買比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有長為24m的籬笆,現(xiàn)一面利用墻(墻的最大可用長度a為10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬AB為xm,面積為Sm2.
(1)求S與x的函數(shù)關(guān)系式及x值的取值范圍;
(2)要圍成面積為45m2的花圃,AB的長是多少米?
(3)當AB的長是多少米時,圍成的花圃的面積最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com