【題目】已知:如圖,直線y=-x+12分別交x軸、y軸于A、B點,將△AOB折疊,使A點恰好落在OB的中點C處,折痕為DE.

(1)求AE的長及sin∠BEC的值;

(2)求△CDE的面積.

【答案】(1)5,sin∠BEC=;(2)

【解析】

(1)如圖,作CFBEF點,由函數(shù)解析式可得點B,點A坐標,繼而可得∠A=B=45°,再根據(jù)中點的定義以及等腰直角三角形的性質(zhì)可得OC=BC=6,CF=BF=3

設(shè)AE=CE=x,則EF=AB-BF-AE=12-3-x=9-x,在RtCEF中,利用勾股定理求出x的值即可求得答案;

(2)如圖,過點EEMOA于點M,根據(jù)三角形面積公式則可得SCDE=SAED=AD×AE,設(shè)AD=y,則CD=y,OD=12-y,在RtOCD中,利用勾股定理求出y,繼而可求得答案.

1)如圖,作CFBEF點,

由函數(shù)解析式可得點B(0,12),點A(12,0),A=B=45°,

又∵點COB中點,

OC=BC=6,CF=BF=3

設(shè)AE=CE=x,則EF=AB-BF-AE=12-3-x=9-x,

RtCEF中,CE2=CF2+EF2,即x2=(9-x)2+(32,

解得:x=5

故可得sinBEC=,AE=5

(2)如圖,過點EEMOA于點M,

SCDE=SAED=ADEM=AD×AEsinEAM=ADAE×sin45°=AD×AE,

設(shè)AD=y,則CD=y,OD=12-y,

RtOCD中,OC2+OD2=CD2,即62+(12-y)2=y2,

解得:y=,即AD=,

SCDE=SAED=AD×AE=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB90°,sinABC8,點DAB的中點,過點BCD的垂線,垂足為點E.

(1)求線段CD的長;

(2)cosABE的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,點C是圓上任意一點,點DAC中點,ODAC于點E,BDAC于點F,若BF1.25DF,則tanABD的值為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC12BC5,將△ABCAB上的點O順時針旋轉(zhuǎn)90°,得到△A'B'C',連結(jié)BC'.若BC'A'B',則OB的值為( )

A. B. 5C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接正三角形,點P在劣弧BC上(不與點B,C重合).

1)如圖1,若PA是⊙O的直徑,則PA______PB+PC(請?zhí)?/span>“=”

2)如圖2,若PA不是⊙O的直徑,那么(1)中的結(jié)論是否仍成立?如果不成立,請說明理由:如果成立,請給出證明.

3)如圖3,若四邊形ACPB的面積是16

①求PA的長;

②設(shè)y=SPCB+SPCA,求當PC為何值時,y的值最大?并直接寫出此時⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,PBA延長線上一點,CGO的弦PCAABC,CGAB,垂足為D

1)求證:PCO的切線;

2)求證:;

3)過點AAEPCO于點E,交CD于點F,連接BE,若sinPCF5,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點C作直線lAB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結(jié)CD,設(shè)直線PB與直線AC交于點E.

(1)求∠BAC的度數(shù);

(2)當點DAB上方,且CDBP時,求證:PC=AC;

(3)在點P的運動過程中

①當點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);

②設(shè)⊙O的半徑為6,點E到直線l的距離為3,連結(jié)BD,DE,直接寫出BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展校園足球運動,某縣城區(qū)四校決定聯(lián)合購買一批足球運動裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.

(1)求每套隊服和每個足球的價格是多少?

(2)若城區(qū)四校聯(lián)合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費用;

(3)假如你是本次購買任務(wù)的負責人,你認為到哪家商場購買比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有長為24m的籬笆,現(xiàn)一面利用墻(墻的最大可用長度a10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬ABxm,面積為Sm2

1)求Sx的函數(shù)關(guān)系式及x值的取值范圍;

2)要圍成面積為45m2的花圃,AB的長是多少米?

3)當AB的長是多少米時,圍成的花圃的面積最大?

查看答案和解析>>

同步練習(xí)冊答案