【題目】如圖,把置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,點(diǎn)P是內(nèi)切圓的圓心.將沿x軸的正方向作無滑動(dòng)滾動(dòng),使它的三邊依次與x軸重合,第一次滾動(dòng)后圓心為,第二次滾動(dòng)后圓心為,…,依此規(guī)律,第2019次滾動(dòng)后,內(nèi)切圓的圓心的坐標(biāo)是________.
【答案】
【解析】
由勾股定理得出AB=,求出Rt△OAB內(nèi)切圓的半徑=1,因此P的坐標(biāo)為(1,1),由題意得出P3的坐標(biāo)(3+5+4+1,1),得出規(guī)律:每滾動(dòng)3次為一個(gè)循環(huán),由2019÷3=673,即可得出結(jié)果.
解:∵點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(3,0),
∴OA=4,OB=3,
∴AB=,
∴Rt△OAB內(nèi)切圓的半徑=,
∴P的坐標(biāo)為(1,1),
∵將Rt△OAB沿x軸的正方向作無滑動(dòng)滾動(dòng),使它的三邊依次與x軸重合,第一次滾動(dòng)后圓心為P1,第二次滾動(dòng)后圓心為P2,…,
∴P3(3+5+4+1,1),即(13,1),每滾動(dòng)3次為一個(gè)循環(huán),
∵2019÷3=673,
∴第2019次滾動(dòng)后,Rt△OAB內(nèi)切圓的圓心P2019的橫坐標(biāo)是673×(3+5+4)+1,即P2019的橫坐標(biāo)是8077,
∴P2019的坐標(biāo)是(8077,1);
故答案為:(8077,1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+c與直線y=mx+n交于A(﹣1,p),B(2,q)兩點(diǎn),則不等式ax2+mx+c>n的解集是( )
A.-1<x<2B.x>-1或x<2C.-2<x<1D.x<-2或x>1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=|a|x2+bx+c的圖象經(jīng)過A(m,n)、B(0,y1)、C(3-m,n)、D(, y2)、E(2,y3),則y1、y2、y3的大小關(guān)系是( ).
A. y1< y2< y3B. y1 < y3< y2C. y3< y2< y1D. y2< y3< y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2經(jīng)過點(diǎn)A(﹣1,0),B(4,0),交y軸于點(diǎn)C;
(1)求拋物線的解析式;
(2)點(diǎn)D為y軸右側(cè)拋物線上一點(diǎn),是否存在點(diǎn)D,使S△ABC=S△ABD?若存在,請求出點(diǎn)D坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場要經(jīng)營一種新上市的文具,進(jìn)價(jià)為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10件.
(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤最大;最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),且過點(diǎn).
(1)直接寫出a的值和點(diǎn)B的坐標(biāo);
(2)將拋物線向右平移2個(gè)單位長度,所得的新拋物線與x軸交于M,N兩點(diǎn),兩拋物線交于點(diǎn)P,求點(diǎn)M到直線PB的距離;
(3)在(2)的條件下,若點(diǎn)D為直線BP上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)D,使得?若存在,請求出點(diǎn)D的坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE是⊙O的直徑,半徑OA⊥弦BC,垂足為D,連接AE、EC.
(1)若∠AEC=25°,求∠AOB的度數(shù);
(2)若∠A=∠B,EC=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),已知點(diǎn)的坐標(biāo),點(diǎn)位置如圖所示,點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱。
(1)在圖中描出點(diǎn);寫出圖中點(diǎn)的坐標(biāo):______________,點(diǎn)的坐標(biāo):_______________;
(2)畫出關(guān)于軸的對稱圖形,并求出四邊形的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中的點(diǎn)和,給出如下定義:連接交于點(diǎn),若點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)在的內(nèi)部,則稱點(diǎn)是的外稱點(diǎn).
(1)當(dāng)的半徑為時(shí),
①在點(diǎn)中,的外稱點(diǎn)是 ;
②若點(diǎn)為的外稱點(diǎn),且線段交于點(diǎn),求的取值范圍;
(2)直線過點(diǎn), 與軸交于點(diǎn). 的圓心為, 半徑為若線段上的所有點(diǎn)都是的外稱點(diǎn),請直接寫出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com