【題目】如圖,拋物線y=ax2+c與直線y=mx+n交于A(﹣1,p),B(2,q)兩點,則不等式ax2+mx+c>n的解集是( 。
A.-1<x<2B.x>-1或x<2C.-2<x<1D.x<-2或x>1
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞點A順時針旋轉(zhuǎn)60°得到△ADE,點C的對應(yīng)點E恰好落在BA的延長線上,DE與BC交于點F,連接BD.下列結(jié)論不一定正確的是( 。
A. AD=BD B. AC∥BD C. DF=EF D. ∠CBD=∠E
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“鮮樂”水果店購進一優(yōu)質(zhì)水果,進價為 10 元/千克,售價不低于 10 元/千克,且不超過 16 元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量 y(千克) 與該天的售價 x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系
銷售量 y(千克) | … | 29 | 28 | 27 | 26 | … |
售價 x(元/千克) | … | 10.5 | 11 | 11.5 | 12 |
(1)某天這種水果的售價為 14 元/千克,求當天該水果的銷售量;
(2)如果某天銷售這種水果獲利 100 元,那么該天水果的售價為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?
(3)設(shè)該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E、F分別是AB、AD的中點,連接AC、EC、EF、FC,且EC⊥EF.
(1)求證:△AEF∽△BCE;
(2)若AC=2,求AB的長;
(3)在(2)的條件下,△ABC的外接圓圓心與△CEF的外接圓圓心之間的距離為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系內(nèi), 的三個頂點坐標分別為 (2,-4), (4,-4), (1,-1).
(1)畫出關(guān)于軸對稱的,直接寫出點的坐標;
(2)畫出繞點逆時針旋轉(zhuǎn)90°后的;
(3)在(2)的條件下,求線段掃過的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《代數(shù)學》中記載,形如x2+10x=39的方程,求正數(shù)解的幾何方法是:“如圖1,先構(gòu)造一個面積為x2的正方形,再以正方形的邊長為一邊向外構(gòu)造四個面積為x的矩形,得到大正方形的面積為39+25=64,則該方程的正數(shù)解為8-5=3”,小聰按此方法解關(guān)于x的方程x2+6x+m=0時,構(gòu)造出如圖2所示的圖形,己知陰影部分的面積為36,則該方程的正數(shù)解為( )
A.6B.3-3C.3-2D.3-
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品,據(jù)市場分析,若每千克50元銷售,一個月能售出500kg,銷售單價每漲2元,月銷售量就減少20kg,針對這種水產(chǎn)品情況,請解答以下問題:
(1)當銷售單價定為每千克55元時,計算銷售量和月銷售利潤.
(2)商品想在月銷售成本不超過10000元的情況下,使得月銷售利潤達到8000元,銷售單價應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把置于平面直角坐標系中,點A的坐標為,點B的坐標為,點P是內(nèi)切圓的圓心.將沿x軸的正方向作無滑動滾動,使它的三邊依次與x軸重合,第一次滾動后圓心為,第二次滾動后圓心為,…,依此規(guī)律,第2019次滾動后,內(nèi)切圓的圓心的坐標是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com