【題目】如圖 1,在正方形 ABCD 中,對(duì)角線 AC, BD 交于點(diǎn) O ,點(diǎn) E AB 上,點(diǎn) F BC 的延長(zhǎng)線上,且 AE CF .連接 EF AC 于點(diǎn) P, 分別連接 DE, DF .

1)求證: ADE CDF ;

2)求證: PE PF ;

3)如圖 2,若 PE BE, 的值是 .(直接寫出結(jié)果即可).

【答案】1)證明見解析;(2)證明見解析;(3.

【解析】

1)根據(jù)證明即可;

2)作的延長(zhǎng)線于,根據(jù)四邊形是正方形,即可得到,再根據(jù)得到,從而,則,根據(jù)可證,即可得證;

3)如圖2中,作,首先證明,設(shè),則,,求出即可解決問題.

1)證明:四邊形是正方形,

2)證明:作的延長(zhǎng)線于,

四邊形是正方形,

,

,

,

,

,

,

3)如圖2中,作,

由(2)可知:,

,

,

,

,

,,

,,

,

設(shè),則,,

.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】貨車在公路A處加滿油后,以每小時(shí)60千米的速度勻速行駛,前往與A處相距360千米的B處.下表記錄的是貨車一次加滿油后油箱剩余油量y(升)與行駛時(shí)間x(時(shí))之間的關(guān)系:

(1)如果y關(guān)于x的函數(shù)是一次函數(shù),求這個(gè)函數(shù)解析式(不要求寫出自變量的取值范圍)

(2)在(1)的條件下,如果貨車的行駛速度和每小時(shí)的耗油量都不變,貨車行駛4小時(shí)后到達(dá)C處,C的前方12千米的D處有一加油站,那么在D處至少加多少升油,才能使貨車到達(dá)B處卸貨后能順利返回會(huì)D處加油?(根據(jù)駕駛經(jīng)驗(yàn),為保險(xiǎn)起見,油箱內(nèi)剩余油量應(yīng)隨時(shí)不少于10升)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生對(duì)新聞、體育、動(dòng)畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機(jī)選取該校部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生從中只選一類最喜愛的電視節(jié)目,以下是根據(jù)調(diào)查結(jié)果繪制的不完整統(tǒng)計(jì)表,根據(jù)表中信息,回答下列問題:

喜愛的電視節(jié)目類型

人數(shù)

頻率

新聞

4

0.08

體育

/

/

動(dòng)畫

15

/

娛樂

18

0.36

戲曲

/

0.06

(1)本次共調(diào)查了_______名學(xué)生,若將各類電視節(jié)目喜愛的人數(shù)所占比例繪制成扇形統(tǒng)計(jì)圖,則“喜愛動(dòng)畫”對(duì)應(yīng)扇形的圓心角度數(shù)是_______;

(2)該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果估計(jì)該!跋矏垠w育”節(jié)目的學(xué)生人數(shù);

(3)在此次問卷調(diào)查中,甲、乙兩班分別有人喜愛新聞節(jié)目,若從這人中隨機(jī)抽取人去參加“新聞小記者”培訓(xùn),求抽取的人來自不同班級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:,且、分別是點(diǎn)A. B. C在數(shù)軸上對(duì)應(yīng)的數(shù).

1)寫出=___;=___=___.

2)若甲、乙、丙三個(gè)動(dòng)點(diǎn)分別從A.B.C三點(diǎn)同時(shí)出發(fā)沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),它們的速度分別是1、2、4,(單位/),運(yùn)行秒后,甲、乙、丙三個(gè)動(dòng)點(diǎn)對(duì)應(yīng)的位置分別為:,,當(dāng)時(shí),求式子的值.

3)若甲、乙、丙三個(gè)動(dòng)點(diǎn)分別從A,B,C三點(diǎn)同時(shí)出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),它們的速度分別是12,4(單位/秒),運(yùn)動(dòng)多長(zhǎng)時(shí)間后,乙與甲、丙等距離?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DBC的中點(diǎn),EAD的中點(diǎn),過A點(diǎn)作BC的平行線交BE的延長(zhǎng)線于F,連接CF

1)線段AFCD相等嗎?為什么?

2)如果AB=AC,試猜測(cè)四邊形ADCF是怎樣的特殊四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段AB=m(m為常數(shù)),點(diǎn)C為直線AB上一點(diǎn)(不與點(diǎn)A、B重合),點(diǎn)M、N分別在線段BC、AC上,且滿足CN=3AN,CM=3BM.

(1)如圖,當(dāng)點(diǎn)C恰好在線段AB中點(diǎn),且m=8時(shí),則MN=______;

(2) 若點(diǎn)C在點(diǎn)A左側(cè),同時(shí)點(diǎn)M在線段AB(不與端點(diǎn)重合),請(qǐng)判斷CN+2AM -2MN的值是否與m有關(guān)?并說明理由.

(3) 若點(diǎn)C是直線AB上一點(diǎn)(不與點(diǎn)A、B重合),同時(shí)點(diǎn)M在線段AB(不與端點(diǎn)重合),求MN長(zhǎng)度 (用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(建立概念)如下圖,A、B為數(shù)軸上不重合的兩定點(diǎn),點(diǎn)P也在該數(shù)軸上,我們比較線段的長(zhǎng)度,將較短線段的長(zhǎng)度定義為點(diǎn)P到線段靠近距離”.特別地,若線段的長(zhǎng)度相等,則將線段的長(zhǎng)度定義為點(diǎn)P到線段靠近距離”.

(概念理解)如下圖,數(shù)軸的原點(diǎn)為O,點(diǎn)A表示的數(shù)為,點(diǎn)B表示的數(shù)為4.

1)點(diǎn)O到線段靠近距離________;

2)點(diǎn)P表示的數(shù)為m,若點(diǎn)P到線段靠近距離3,則m的值為_________

(拓展應(yīng)用)(3)如下圖,在數(shù)軸上,點(diǎn)P表示的數(shù)為,點(diǎn)A表示的數(shù)為,點(diǎn)B表示的數(shù)為6. 點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度向正半軸方向移動(dòng)時(shí),點(diǎn)B同時(shí)以每秒1個(gè)單位長(zhǎng)度的速度向負(fù)半軸方向移動(dòng).設(shè)移動(dòng)的時(shí)間為秒,當(dāng)點(diǎn)P到線段靠近距離3時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織360名師生外出活動(dòng),計(jì)劃租用甲、乙兩種型號(hào)的客車;經(jīng)了解,甲車每輛最多能載40人和16件行李,乙車每輛最多能載30人和20件行李.

(1)已知師生行李打包后共有164件,若租用10輛甲、乙兩種型號(hào)的客車,請(qǐng)你幫助設(shè)計(jì)出該校所有可行的租車方案;

(2)若師生行李打包后共有m件,且170 < m ≤ 184,如果所租車輛剛好把所有師生和行李載走(每輛車均以最多承載量載滿),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y = x2 + bx + c的圖象經(jīng)過點(diǎn)Al ,0) ,B﹣3 ,0,與y軸交于點(diǎn)C ,拋物線的頂點(diǎn)為D ,對(duì)稱軸與x軸相交于點(diǎn)E ,連接BD

(1)求拋物線的解析式

(2)若點(diǎn)P在直線BD上,當(dāng)PE = PC時(shí),求點(diǎn)P的坐標(biāo)

(3)在(2)的條件下,作PF⊥x軸于F ,點(diǎn)Mx軸上一動(dòng)點(diǎn) ,N為直線PF上一動(dòng)點(diǎn) ,G為拋物線上一動(dòng)點(diǎn),當(dāng)以點(diǎn)F ,N G ,M 四點(diǎn)為頂點(diǎn)的四邊形為正方形時(shí),求點(diǎn)M的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊(cè)答案