【題目】如圖,長方形ABCD中,∠DAB=B=C=D=90°,AD=BC=6 AB=CD=10.點(diǎn)E為射線DC上的一個(gè)動(dòng)點(diǎn),△ADE與△ADE關(guān)于直線AE對(duì)稱,當(dāng)△ADB為直角三角形時(shí),DE的長為(  )

A.28B.18C.2D.218

【答案】D

【解析】

分兩種情況:點(diǎn)EDC線段上,點(diǎn)EDC延長線上的一點(diǎn),進(jìn)一步分析探討得出答案即可.

解:如圖1,


∵折疊,

∴△AD′E≌△ADE,

∴∠AD′E=D=90°,

∵∠AD′B=90°

B、D′E三點(diǎn)共線,

又∵ABD′∽△BEC,AD′=BC,

ABD′≌△BEC,

BE=AB=10,

,

;

如圖2

∵∠ABD″+CBE=ABD″+BAD″=90°,

∴∠CBE=BAD″

ABD″BEC中,

,

∴△ABD″≌△BEC,

BE=AB=10,

DE=D″E=10+8=18

綜上所知,DE=218
故答案為A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,點(diǎn)A、B在直線l同側(cè),BD⊥l,AE⊥l,垂足分別為D、E.求證:△AEC≌△CDB;

(2)類比探究:如圖2,Rt△ABC中,∠ACB=90°,AC=6,將斜邊AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至AB′,連接B′C,求△AB′C的面積.

(3)拓展提升:如圖3,等邊△EBC中,EC=BC=4cm,點(diǎn)OBC上,且OC=3cm,動(dòng)點(diǎn)P從點(diǎn)E沿射線EC2cm/s速度運(yùn)動(dòng),連結(jié)OP,將線段OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°得到線段OF.要使點(diǎn)F恰好落在射線EB上,求點(diǎn)P運(yùn)動(dòng)的時(shí)間ts.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點(diǎn)CCF平行于BAPQ于點(diǎn)F,連接AF

(1)求證:AED≌△CFD

(2)求證:四邊形AECF是菱形.

(3)若AD=3,AE=5,則菱形AECF的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AD平分∠BACBDAD,垂足為D,過DDEAC,交ABE,若BD=7,AD=24,求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx(a≠0)過點(diǎn)E(10,0),矩形ABCD的邊AB在線段OE上(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時(shí),AD=4.

(1)求拋物線的函數(shù)表達(dá)式.

(2)當(dāng)t為何值時(shí),矩形ABCD的周長有最大值?最大值是多少?

(3)保持t=2時(shí)的矩形ABCD不動(dòng),向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個(gè)交點(diǎn)G,H,且直線GH平分矩形的面積時(shí),求拋物線平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A(﹣6,0),C(0,2).將矩形OABC繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn),使點(diǎn)A恰好落在OB上的點(diǎn)A1處,則點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在4×8的網(wǎng)格紙中,每個(gè)小正方形的邊長都為1,動(dòng)點(diǎn)P、Q分別從點(diǎn)D、A同時(shí)出發(fā)向右移動(dòng),點(diǎn)P的運(yùn)動(dòng)速度為每秒2個(gè)單位,點(diǎn)Q的運(yùn)動(dòng)速度為每秒1個(gè)單位,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩個(gè)點(diǎn)都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t0t4).

1)請(qǐng)?jiān)?/span>4×8的網(wǎng)格紙圖①中畫出t3秒時(shí)的線段PQ.并求其長度;

2)若MBC的中點(diǎn),PQM的面積為S,請(qǐng)用含有t的代數(shù)式來表示S;

3)當(dāng)t為多少時(shí),△PQB是以PQ為腰的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一塊三角形的土地要分給甲、乙、丙三家農(nóng)戶. 如圖,如果∠A=90°,∠B=30°.

1)這三家農(nóng)戶所得土地的大小、形狀都相同,請(qǐng)你在圖中試著分一分,并簡潔說明你的理由.

2)要使這三家農(nóng)戶所得土地是面積相等的三角形,且有一個(gè)公共頂點(diǎn),請(qǐng)你在備用圖中試著分一分,并簡潔說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(jí)(1)班同學(xué)上數(shù)學(xué)活動(dòng)課,利用角尺平分一個(gè)角(如圖).設(shè)計(jì)了如下方案:

(Ⅰ)∠AOB是一個(gè)任意角,將角尺的直角頂點(diǎn)P介于射線OA,OB之間,移動(dòng)角尺使角尺兩邊相同的刻度與M,N重合,PM=PN,過角尺頂點(diǎn)P的射線OP就是∠AOB的平分線.

(Ⅱ)∠AOB是一個(gè)任意角,在邊OA,OB上分別取OM=ON,將角尺的直角頂點(diǎn)P介于射線OA,OB之間,移動(dòng)角尺使角尺兩邊相同的刻度與M,N重合,PM=PN,過角尺頂點(diǎn)P的射線OP就是∠AOB的平分線.

(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,請(qǐng)證明;若不可行,請(qǐng)說明理由.

(2)在方案(Ⅰ)PM=PN的情況下,繼續(xù)移動(dòng)角尺,同時(shí)使PM⊥OA,PN⊥OB.此方案是否可行?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案