【題目】陽光小區(qū)附近有一塊長100m,寬80m的長方形空地,在空地上有兩條相同寬度的步道(一縱一橫)和一個邊長為步道寬度7倍的正方形休閑廣場,兩條步道的總面積與正方形休閑廣場的面積相等,如圖1所示.設(shè)步道的寬為a(m).
(1)求步道的寬.
(2)為了方便市民進行跑步健身,現(xiàn)按如圖2所示方案增建塑膠跑道.己知塑膠跑道的寬為1m,長方形區(qū)域甲的面積比長方形區(qū)域乙大441m2, 且區(qū)域丙為正方形,求塑膠跑道的總面積.
【答案】(1)3.6m (2)199m2
【解析】
(1)步道寬度為a, 則正方形休閑廣場的邊長為7a, 根據(jù)兩條步道總面積等于休閑廣場面積列方程求解即可.其中注意兩條步道總面積要減去重疊部分的小正方形面積.
(2)根據(jù)空地的長度和寬度,道路和塑膠的寬度以及丙的邊長,計算出甲、乙區(qū)域長之差,因兩區(qū)域的寬度相等,根據(jù)面積之差等于長度之差乘以寬度,求得寬度,即正方形丙的邊長,塑膠跑道的總面積等于總長度乘以塑膠寬度,總長度等于空地長寬之和加丙的一邊長,再減去有兩次重復(fù)相加的塑膠寬度.
(1)解:由題意,得100a+80a-a2=(7a)2 ,
化簡,得a2=3.6a,
∵a>0,
∴a=3.6.
答:步道的寬為3.6 m.
(2)解:如圖,
由題意,得AB-DE=100-80+1=21(m),
∴BC=EF==21(m).
∴塑膠跑道的總面積為1×(100+80+21-2)=199(m2).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,有兩個點,.
(1)若、關(guān)于軸對稱,則_________________,________________.
(2)若、關(guān)于軸對稱,則_________________,________________.
(3)若、兩點重合,將重合后的點繞原點順時針旋轉(zhuǎn),此時點的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點、分別在、軸上,已知點的坐標(biāo)為,且.
(1) (2) (3)
(1)求的長度;
(2)以為一邊作等邊,過點作,交的垂直平分線于點.求證:;
(3)在(2)的條件下,連接交于,求證:為的中點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《代數(shù)學(xué)》中記載,形如x2+10x=39的方程,求正數(shù)解的幾何方法是:“如圖1,先構(gòu)造一個面積為x2的正方形,再以正方形的邊長為一邊向外構(gòu)造四個面積為x的矩形,得到大正方形的面積為39+25=64,則該方程的正數(shù)解為8-5=3”,小聰按此方法解關(guān)于x的方程x2+6x+m=0時,構(gòu)造出如圖2所示的圖形,己知陰影部分的面積為36,則該方程的正數(shù)解為( )
A.6B.3-3C.3-2D.3-
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校實施新課程改革以來,學(xué)生的學(xué)習(xí)能力有了很大提高,王老師為進一步了解本班學(xué)生自主學(xué)習(xí)、合作交流的現(xiàn)狀,對該班部分學(xué)生進行調(diào)查,把調(diào)查結(jié)果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖(如圖①②).請根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調(diào)查中,王老師一共調(diào)查了________名學(xué)生;
(2)將條形統(tǒng)計圖補充完整;
(3)為了共同進步,王老師從被調(diào)查的A類和D類學(xué)生中分別選取一名學(xué)生進行“兵教兵”互助學(xué)習(xí),請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進行比賽的路程與時間的關(guān)系如圖所示.
(1)這是一場________米比賽;
(2)前一半賽程內(nèi)________的速度較快,最終________贏得了比賽;
(3)兩人第________秒在途中相遇,相遇時距終點________米;
(4)甲在前8秒的平均速度是多少?甲在整個賽程的平均速度是多少?乙在前8秒的平均速度是多少?乙在整個賽程的平均速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線相交于點A(m,3),B(-6,n),與x軸交于點C.
(1)求直線y=kx+b(k≠0)的解析式;
(2)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標(biāo)(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個點從數(shù)軸上的原點開始,先向右移動3個單位長度,再向左移動5個單位長度,可以看到終點表示的數(shù)是-2,已知點A,B是數(shù)軸上的點,請參照圖并思考,完成下列各題.
(1)如果點A表示數(shù)-3,將點A向右移動7個單位長度,那么終點B表示的數(shù)是_____,A,B兩點間的距離是_____;
(2)如果點A表示數(shù)3,將A點向左移動7個單位長度,再向右移動5個單位長度,那么終點表示的數(shù)是_____,A,B兩點間的距離為_____;
(3)如果點A表示數(shù)-4,將A點向右移動168個單位長度,再向左移動256個單位長度,那么終點B表示的數(shù)是_____,A、B兩點間的距離是_____;
(4)一般地,如果A點表示的數(shù)為m,將A點向右移動n個單位長度,再向左移動p個單位長度,那么請你猜想終點B表示什么數(shù)?A,B兩點間的距離為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下表,回答問題:
x | … | -2 | -1 | 0 | 1 | 2 | … |
-2x+5 | … | 9 | 7 | 5 | 3 | a | … |
2x+8 | … | 4 | 6 | 8 | 10 | b | … |
(初步感知)
(1)a= ;b= ;
(歸納規(guī)律)
(2)隨著x值的變化,兩個代數(shù)式的值變化規(guī)律是什么?
(問題解決)
(3)比較-2x+5與2x+8的大。
(4)請寫出一個含x的代數(shù)式,要求x的值每增加1,代數(shù)式的值減小5,當(dāng)x=0時,
代數(shù)式的值為-7.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com