【題目】如圖,已知AB∥CD,CN是∠BCE的平分線.
(1)若CM平分∠BCD,求∠MCN的度數(shù);
(2)若CM在∠BCD的內(nèi)部,且CM⊥CN于C,求證:CM平分∠BCD;
(3)在(2)的條件下,連結(jié)BM,BN,且BM⊥BN,∠MBN繞著B點(diǎn)旋轉(zhuǎn),∠BMC+∠BNC是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍.
【答案】(1)90°;(2)見(jiàn)解析;(3)∠BMC+∠BNC=180°不變,理由見(jiàn)解析
【解析】
(1)利用角平分線的定義和補(bǔ)角的定義可得結(jié)果;
(2)由垂直的定義可得∠MCN=90°,即∠BCN+∠BCM=90°,利用等式的性質(zhì)可得2∠BCN+2∠BCM=180°,又因?yàn)椤?/span>BCE=2∠BCN,可得∠BCD=2∠BCM,即得結(jié)論;
(3)延長(zhǎng)AB至F,過(guò)N,M分別作NG∥AB,MH∥AB,則有NG∥AB∥MH∥CD,利用平行線的性質(zhì)易得∠BNG=∠ABN,∠CNG=∠ECN,∠BMH=∠FBM,∠CMH=∠DCM,由∠MBN=∠MCN=90°,可得∠ABN+∠FBM+∠ECN+∠DCM=180°,由角平分線的定義可得結(jié)論.
(1)∵CN,CM分別平分∠BCE和∠BCD,
∴BCN=∠BCE,∠BCM=∠BCD,
∵∠BCE+∠BCD=180°,
∴∠MCN=∠BCN+∠BCM=∠BCE+∠BCD=(∠BCE+∠BCD)=90°;
(2)∵CM⊥CN,∴∠MCN=90°,即∠BCN+∠BCM=90°,
∴2∠BCN+2∠BCM=180°,
∵CN是∠BCE的平分線,∴∠BCE=2∠BCN,
∴∠BCE+2∠BCM=180°,
又∵∠BCE+∠BCD=180°,∴∠BCD=2∠BCM,
又∵CM在∠BCD的內(nèi)部,∴CM平分∠BCD;
(3)如圖,∠BMC+∠BNC=180°,延長(zhǎng)AB至F,過(guò)N,M分別作NG∥AB,MH∥AB,則有NG∥AB∥MH∥CD,
∴∠BNG=∠ABN,∠CNG=∠ECN,∠BMH=∠FBM,∠CMH=∠DCM,
∵BM⊥BN,CM⊥CN,∴∠MBN=∠MCN=90°,
∵∠ABN+∠MBN+FBM=180°,∠ECN+∠MCN+∠DCM=180°,
∴∠ABN+∠FBM+∠ECN+∠DCM=180°,
∴∠BMC+∠BNC=∠BMH+∠CMH+∠BNG+∠CNG=∠ABN+∠FBM+∠ECN+∠DCM=180°,
∴∠BMC+∠BNC=180°不變.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結(jié)論: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論__________(填編號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某日的錢塘江觀潮信息如表:
按上述信息,小紅將“交叉潮”形成后潮頭與乙地之間的距離 (千米)與時(shí)間 (分鐘)的函數(shù)關(guān)系用圖3表示,其中:“11:40時(shí)甲地‘交叉潮’的潮頭離乙地12千米”記為點(diǎn) ,點(diǎn) 坐標(biāo)為 ,曲線 可用二次函數(shù) ( , 是常數(shù))刻畫.
(1)求 的值,并求出潮頭從甲地到乙地的速度;
(2)11:59時(shí),小紅騎單車從乙地出發(fā),沿江邊公路以 千米/分的速度往甲地方向去看潮,問(wèn)她幾分鐘后與潮頭相遇?
(3)相遇后,小紅立即調(diào)轉(zhuǎn)車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過(guò)乙地后均勻加速,而單車最高速度為 千米/分,小紅逐漸落后,問(wèn)小紅與潮頭相遇到落后潮頭1.8千米共需多長(zhǎng)時(shí)間?(潮水加速階段速度 , 是加速前的速度).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三個(gè)不透明的布袋中分別放入一些除顏色不同外其他都相同的玻璃球,并攪勻,具體情況如下表:
在下列事件中,哪些是隨機(jī)事件,哪些是必然事件,哪些是不可能事件?
(1)隨機(jī)從第一個(gè)布袋中摸出一個(gè)玻璃球,該球是黃色、綠色或紅色的;
(2)隨機(jī)的從第二個(gè)布袋中摸出兩個(gè)玻璃球,兩個(gè)球中至少有一個(gè)不是綠色的;
(3)隨機(jī)的從第三個(gè)布袋中摸出一個(gè)玻璃球,該球是紅色的;
(4)隨機(jī)的從第一個(gè)布袋中和第二個(gè)布袋中各摸出一個(gè)玻璃球,兩個(gè)球的顏色一致.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,AC=6,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫弧DE,若∠1=∠2,則弧DE的長(zhǎng)為( )
A.1π
B.1.5π
C.2π
D.3π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,∠CDB=30°,CD=2 則陰影部分圖形的面積為( 。
A.4π
B.2π
C.π
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知O為直線AB上一點(diǎn),OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,則∠BOE的度數(shù)為( 。
A. α B. 180°﹣2α C. 360°﹣4α D. 2α﹣60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+2的圖象經(jīng)過(guò)點(diǎn)(﹣1,4).
(1)求k的值;
(2)畫出該函數(shù)的圖象;
(3)當(dāng)x≤2時(shí),y的取值范圍是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com