【題目】如圖,已知O為直線AB上一點(diǎn),OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,則∠BOE的度數(shù)為( 。

A. α B. 180°﹣2α C. 360°﹣4α D. 2α﹣60°

【答案】C

【解析】

設(shè)∠DOE=x,則∠BOE=2x,根據(jù)角之間的等量關(guān)系求出∠AOD、COD、COE的大小,然后解得x即可.

設(shè)∠DOE=x,則∠BOE=2x,
∵∠BOD=BOE+EOD,
∴∠BOD=3x,
∴∠AOD=180°-BOD=180°-3x.
OC平分∠AOD,
∴∠COD=AOD=(180°-3x)=90°-x.
∵∠COE=COD+DOE=90°-x+x=90°-,
由題意有90°-,解得x=180°-2α,即∠DOE=180°-2α,
∴∠BOE=360-4α,
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市今年中考理、化實(shí)驗(yàn)操作考試,采用學(xué)生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定:每位考生必須在三個(gè)物理實(shí)驗(yàn)(用紙簽A、B、C表示)和三個(gè)化學(xué)實(shí)驗(yàn)(用紙簽D、E、F表示)中各抽取一個(gè)進(jìn)行考試,小剛在看不到紙簽的情況下,分別從中各隨機(jī)抽取一個(gè).
(1)用“列表法”或“樹(shù)狀圖法”表示所有可能出現(xiàn)的結(jié)果;
(2)小剛抽到物理實(shí)驗(yàn)B和化學(xué)實(shí)驗(yàn)F(記作事件M)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=kx+b(k、b為常數(shù))分別與x軸、y軸交于點(diǎn)A(﹣4,0)、B(0,3),拋物線y=﹣x2+2x+1與y軸交于點(diǎn)C.
(Ⅰ)求直線y=kx+b的函數(shù)解析式;
(Ⅱ)若點(diǎn)P(x,y)是拋物線y=﹣x2+2x+1上的任意一點(diǎn),設(shè)點(diǎn)P到直線AB的距離為d,求d關(guān)于x的函數(shù)解析式,并求d取最小值時(shí)點(diǎn)P的坐標(biāo);
(Ⅲ)若點(diǎn)E在拋物線y=﹣x2+2x+1的對(duì)稱(chēng)軸上移動(dòng),點(diǎn)F在直線AB上移動(dòng),求CE+EF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD,CN是∠BCE的平分線.

(1)CM平分∠BCD,求∠MCN的度數(shù);

(2)CM在∠BCD的內(nèi)部,且CMCNC,求證:CM平分∠BCD;

(3)(2)的條件下,連結(jié)BM,BN,且BMBN,MBN繞著B點(diǎn)旋轉(zhuǎn),∠BMC+BNC是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)面積為1的正方形,經(jīng)過(guò)一次生長(zhǎng),在它的左右肩上生出兩個(gè)小正方形(如圖1),其中,三個(gè)正方形圍成的三角形是直角三角形,再經(jīng)過(guò)一次生長(zhǎng),生出了4個(gè)正方形(如圖2),如果按此規(guī)律繼續(xù)生長(zhǎng)下去,它將變得枝繁葉茂.生長(zhǎng)2 017次后形成的圖形中所有正方形的面積和是(  )

1 2

A. 2015 B. 2016 C. 2017 D. 2018

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】邊長(zhǎng)為4cm的正方形ABCD繞它的頂點(diǎn)A旋轉(zhuǎn)180°,頂點(diǎn)B所經(jīng)過(guò)的路線長(zhǎng)為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為6的正六邊形ABCDEF的對(duì)稱(chēng)中心與原點(diǎn)O重合,點(diǎn)A在x軸上,點(diǎn)B在反比例函數(shù) 位于第一象限的圖象上,則k的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①有一個(gè)寶塔,它的地基邊緣是周長(zhǎng)為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心.(下列各題結(jié)果精確到0.1m)

(1)求地基的中心到邊緣的距離;
(2)己知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問(wèn)塑像底座的半徑最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有下列說(shuō)法:①若DE∥AB,則∠DEF+∠EFB=180;

②能與∠DEF構(gòu)成內(nèi)錯(cuò)角的角的個(gè)數(shù)有2個(gè);③能與∠BFE構(gòu)

成同位角的角的個(gè)數(shù)有2個(gè);④能與∠C構(gòu)成同旁內(nèi)角的角的個(gè)數(shù)有4個(gè).其中結(jié)論正確的是( )

A. ①② B. ③④ C. ①③④ D. ①②④

查看答案和解析>>

同步練習(xí)冊(cè)答案