【題目】已知二次函數(shù) y=ax2+bx+c(a≠0),過(1,y1)(2,y2).
①若 y1>0 時(shí),則 a+b+c>0
②若 a=b 時(shí),則 y1<y2
③若 y1<0,y2>0,且 a+b<0,則 a>0
④若 b=2a﹣1,c=a﹣3,且 y1>0,則拋物線的頂點(diǎn)一定在第三象限上述四個(gè)判斷正確的有( )個(gè).
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
根據(jù)二次函數(shù)的性質(zhì)以及圖象與系數(shù)之間的關(guān)系判斷即可.
①若 y1>0 時(shí),當(dāng) x=1 時(shí),y1=a+b+c>0 此時(shí),正確;
②若 a=b 時(shí),即函數(shù)的對(duì)稱軸是 x=﹣,開口方向不確定也確定不了 y1、y2 的大小,故 y1<y2,錯(cuò)誤;
③若 y1<0,y2>0,即:a+b+c<0,4a+2b+c>0,
解得:﹣3a﹣b<0,
而 a+b<0,
即:﹣2a<0,
∴a>0,正確;
④若 b=2a﹣1,c=a﹣3,且 y1>0,
即:a+b+c>0,
把 b、c 的值代入上式得:a>1, 則 b>1,c>﹣2,
頂點(diǎn)的 x坐標(biāo)=﹣<0,頂點(diǎn)的 y坐標(biāo)=﹣=﹣2﹣<0,
故頂點(diǎn)一定在第三象限,正確;
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人分別加工100個(gè)零件,甲第1個(gè)小時(shí)加工了10個(gè)零件,之后每小時(shí)加工30個(gè)零件.乙在甲加工前已經(jīng)加工了40個(gè)零件,在甲加工3小時(shí)后乙開始追趕甲,結(jié)果兩人同時(shí)完成任務(wù).設(shè)甲、乙兩人各自加工的零件數(shù)為(個(gè)),甲加工零件的時(shí)間為(時(shí)),與之間的函數(shù)圖象如圖所示.
(1)在乙追趕甲的過程中,求乙每小時(shí)加工零件的個(gè)數(shù).
(2)求甲提高加工速度后甲加工的零件數(shù)與之間的函數(shù)關(guān)系式.
(3)當(dāng)甲、乙兩人相差12個(gè)零件時(shí),直接寫出甲加工零件的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形中,,點(diǎn)是射線上一動(dòng)點(diǎn),以為邊向右側(cè)作等邊,點(diǎn)的位置隨著點(diǎn)的位置變化而變化.
(1)如圖1,當(dāng)點(diǎn)在菱形內(nèi)部或邊上時(shí),連接,與的數(shù)量關(guān)系是______,與的位置關(guān)系是______;
(2)當(dāng)點(diǎn)在菱形外部時(shí),(1)中的結(jié)論是否還成立?若成立,請(qǐng)予以證明;若不成立,請(qǐng)說明理由(選擇圖2,圖3中的一種情況予以證明或說理);
(3)如圖4,當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),連接,若,,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形AOD中,∠AOD=90°,OA=6,點(diǎn)P為弧AD上任意一點(diǎn)(不與點(diǎn)A和D重合),PQ⊥OD于點(diǎn)Q,點(diǎn)I為△OPQ的內(nèi)心,過O、I和D三點(diǎn)的圓的半徑為r,則當(dāng)點(diǎn)P在弧AD上運(yùn)動(dòng)時(shí),求r的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,P是BA延長(zhǎng)線上一點(diǎn),CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足為D
(1)求證:PC是⊙O的切線;
(2)求證:;
(3)過點(diǎn)A作AE∥PC交⊙O于點(diǎn)E,交CD于點(diǎn)F,連接BE,若sin∠P=,CF=5,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,Rt△ABC 的三個(gè)頂點(diǎn)分別是 A(﹣4,2),B(﹣1,4),C(﹣1,2).
(1)將△ABC 以點(diǎn) C 為旋轉(zhuǎn)中心旋轉(zhuǎn) 180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△,的坐標(biāo)為 ;
(2)平移△ABC,點(diǎn) B 的對(duì)應(yīng)點(diǎn) 的坐標(biāo)為(4,﹣1),畫出平移后對(duì)應(yīng)的△,的坐標(biāo)為 ;
(3)若將△繞某一點(diǎn)旋轉(zhuǎn)可以得到△,請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo) 為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為菱形,已知,.
(1)求點(diǎn)的坐標(biāo);
(2)求經(jīng)過點(diǎn),兩點(diǎn)的一次函數(shù)的解析式.
(3)求菱形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(﹣2,6),且與x軸相交于點(diǎn)B,與正比例函數(shù)y=3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1.
(1)求k、b的值;
(2)若點(diǎn)D在y軸負(fù)半軸上,且滿足S△COD=S△BOC,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四邊形的周長(zhǎng)為32,求BC和DC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com