【題目】如圖1,在平面直角坐標(biāo)系中,直線與拋物線交于兩點(diǎn),其中,.該拋物線與軸交于點(diǎn),與軸交于另一點(diǎn).
(1)求的值及該拋物線的解析式;
(2)如圖2.若點(diǎn)為線段上的一動(dòng)點(diǎn)(不與重合).分別以、為斜邊,在直線的同側(cè)作等腰直角△和等腰直角△,連接,試確定△面積最大時(shí)點(diǎn)的坐標(biāo).
(3)如圖3.連接、,在線段上是否存在點(diǎn),使得以為頂點(diǎn)的三角形與△相似,若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)當(dāng),即時(shí),最大,此時(shí),所以;(3)存在點(diǎn)坐標(biāo)為或.
【解析】(1)把A與B坐標(biāo)代入一次函數(shù)解析式求出m與n的值,確定出A與B坐標(biāo),代入二次函數(shù)解析式求出b與c的值即可;
(2)由等腰直角△APM和等腰直角△DPN,得到∠MPN為直角,由兩直角邊乘積的一半表示出三角形MPN面積,利用二次函數(shù)性質(zhì)確定出三角形面積最大時(shí)P的坐標(biāo)即可;
(3)存在,分兩種情況,根據(jù)相似得比例,求出AQ的長(zhǎng),利用兩點(diǎn)間的距離公式求出Q坐標(biāo)即可.
(1)把A(m,0),B(4,n)代入y=x﹣1得:m=1,n=3,∴A(1,0),B(4,3).
∵y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A與點(diǎn)B,∴,解得:,則二次函數(shù)解析式為y=﹣x2+6x﹣5;
(2)如圖2,△APM與△DPN都為等腰直角三角形,∴∠APM=∠DPN=45°,∴∠MPN=90°,∴△MPN為直角三角形,令﹣x2+6x﹣5=0,得到x=1或x=5,∴D(5,0),即DP=5﹣1=4,設(shè)AP=m,則有DP=4﹣m,∴PM=m,PN=(4﹣m),∴S△MPN=PMPN=×m×(4﹣m)=﹣m2﹣m=﹣(m﹣2)2+1,∴當(dāng)m=2,即AP=2時(shí),S△MPN最大,此時(shí)OP=3,即P(3,0);
(3)存在,易得直線CD解析式為y=x﹣5,設(shè)Q(x,x﹣5),由題意得:∠BAD=∠ADC=45°,分兩種情況討論:
①當(dāng)△ABD∽△DAQ時(shí),=,即=,解得:AQ=,由兩點(diǎn)間的距離公式得:(x﹣1)2+(x﹣5)2=,解得:x=,此時(shí)Q(,﹣);
②當(dāng)△ABD∽△DQA時(shí),=1,即AQ=,∴(x﹣1)2+(x﹣5)2=10,解得:x=2,此時(shí)Q(2,﹣3).
綜上,點(diǎn)Q的坐標(biāo)為(2,﹣3)或(,﹣).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知二次函數(shù)y=ax2﹣2ax﹣3a(a>0)圖象與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求點(diǎn)A,B的坐標(biāo);
(2)若M為對(duì)稱(chēng)軸與x軸交點(diǎn),且DM=2AM.
①求二次函數(shù)解析式;
②當(dāng)t﹣2≤x≤t時(shí),二次函數(shù)有最大值5,求t值;
③若直線x=4與此拋物線交于點(diǎn)E,將拋物線在C,E之間的部分記為圖象記為圖象P(含C,E兩點(diǎn)),將圖象P沿直線x=4翻折,得到圖象Q,又過(guò)點(diǎn)(10,﹣4)的直線y=kx+b與圖象P,圖象Q都相交,且只有兩個(gè)交點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A、B均為格點(diǎn).
(Ⅰ)AB的長(zhǎng)等于_____.
(Ⅱ)若點(diǎn)C是以AB為底邊的等腰直角三角形的頂點(diǎn),點(diǎn)D在邊AC上,且滿(mǎn)足S△ABD=S△ABC.請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出線段BD,并簡(jiǎn)要說(shuō)明點(diǎn)D的位置是如何找到的(不要求證明)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在全國(guó)初中數(shù)學(xué)聯(lián)賽中,將參賽兩個(gè)班學(xué)生的成績(jī)(得分均為整數(shù))進(jìn)行整理后分成五組,繪制出如下的頻率分布直方圖(如圖所示),已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是0.25、0.15、0.10、0.10,第二組的頻數(shù)是40.
(1)第二小組的頻率是_____,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)這兩個(gè)班參賽的學(xué)生人數(shù)是_________;
(3)這兩個(gè)班參賽學(xué)生的成績(jī)的中位數(shù)落在第______組內(nèi).(不必說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與反比例函數(shù)在第二象限內(nèi)的圖象相交于點(diǎn),將直線向上平移后與反比例函數(shù)圖象在第二象限內(nèi)交于點(diǎn),與軸交于點(diǎn),且的面積為3,則直線的關(guān)系式為:________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,是上一點(diǎn),連接
(1)如圖1,若,是延長(zhǎng)線上一點(diǎn),與垂直,求證:
(2)過(guò)點(diǎn)作,為垂足,連接并延長(zhǎng)交于點(diǎn).
①如圖2,若,求證:
②如圖3,若是的中點(diǎn),直接寫(xiě)出的值(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為,在正方形外,,過(guò)作于,直線,交于點(diǎn),直線交直線于點(diǎn),則下列結(jié)論正確的是( )
①;②;③;
④若,則
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,.動(dòng)點(diǎn)從點(diǎn)出發(fā),沿以每秒個(gè)單位長(zhǎng)度的速度向終點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)與點(diǎn)、不重合時(shí),過(guò)點(diǎn)作交折線于點(diǎn),以為邊向左作正方形.設(shè)正方形與重疊部分圖形的面積為(平方單位),點(diǎn)運(yùn)動(dòng)的時(shí)間為(秒).
備用圖
(1)用含的代數(shù)式表示的長(zhǎng).
(2)直接寫(xiě)出點(diǎn)在內(nèi)部時(shí)的取值范圍.
(3)求與之間的函數(shù)關(guān)系式.
(4)直接寫(xiě)出點(diǎn)落在的中位線所在直線上時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一副三角板(△ABC與△DEF)如圖放置,點(diǎn)D在AB邊上滑動(dòng),DE交AC于點(diǎn)G,DF交BC于點(diǎn)H,且在滑動(dòng)過(guò)程中始終保持DG=DH,若AC=2,則△BDH面積的最大值是( )
A.3B.3C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com