【題目】“如果二次函數(shù)的圖象與x軸有兩個公共點(diǎn),那么一元二次方程有兩個不相等的實(shí)數(shù)根.”請根據(jù)你對這句話的理解,解決下面問題:若m、n(m<n)是關(guān)于x的方程的兩根,且a<b,則a、b、m、n的大小關(guān)系是【 】

A. m<a<b<n B. a<m<n<b C. a<m<b<n D. m<a<n<b

【答案】A

【解析】依題意畫出函數(shù)y=(x-a)(x-b)圖象草圖,根據(jù)二次函數(shù)的增減性求解.

解:依題意,畫出函數(shù)y=(x-a)(x-b)的圖象,如圖所示.


函數(shù)圖象為拋物線,開口向上,與x軸兩個交點(diǎn)的橫坐標(biāo)分別為a,b(a<b).
方程1-(x-a)(x-b)=0
轉(zhuǎn)化為(x-a)(x-b)=1,
方程的兩根是拋物線y=(x-a)(x-b)與直線y=1的兩個交點(diǎn).
由m<n,可知對稱軸左側(cè)交點(diǎn)橫坐標(biāo)為m,右側(cè)為n.
由拋物線開口向上,則在對稱軸左側(cè),y隨x增大而減少,則有m<a;在對稱軸右側(cè),y隨x增大而增大,則有b<n.
綜上所述,可知m<a<b<n.
故選A.

“點(diǎn)睛”本題考查了二次函數(shù)與一元二次方程的關(guān)系,考查了數(shù)形結(jié)合的數(shù)學(xué)思想.解題時,畫出函數(shù)草圖,由函數(shù)圖象直觀形象地得出結(jié)論,避免了繁瑣復(fù)雜的計(jì)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中的假命題是( )

A. 過直線外一點(diǎn)有且只有一條直線與這條直線平行

B. 平行于同一直線的兩條直線平行

C. 直線y2x1與直線y2x+3一定互相平行

D. 如果兩個角的兩邊分別平行,那么這兩個角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.如果兩個角相等,那么這兩個角是對頂角

B.內(nèi)錯角相等

C.過直線外一點(diǎn)有且只有一條直線與已知直線平行

D.一個角的補(bǔ)角一定是鈍角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)是(8,4),連接AC,BC.

(1)求過O,A,C三點(diǎn)的拋物線的解析式,并判斷△ABC的形狀;

(2)動點(diǎn)P從點(diǎn)O出發(fā),沿OB以每秒2個單位長度的速度向點(diǎn)B運(yùn)動;同時,動點(diǎn)Q從點(diǎn)B出發(fā),沿BC以每秒1個單位長度的速度向點(diǎn)C運(yùn)動.規(guī)定其中一個動點(diǎn)到達(dá)端點(diǎn)時,另一個動點(diǎn)也隨之停止運(yùn)動.設(shè)運(yùn)動時間為t秒,當(dāng)t為何值時,PA=QA?

(3)在拋物線的對稱軸上,是否存在點(diǎn)M,使以A,B,M為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖表示兩輛汽車行駛路程與時間的關(guān)系(汽車B在汽車A后出發(fā))的圖象,試回答下列問題:

(1)圖中l(wèi)1 , l2分別表示哪一輛汽車的路程與時間的關(guān)系?
(2)寫出汽車A和汽車B行駛的路程s與時間t的函數(shù)關(guān)系式,并求汽車A和汽車B的速度;
(3)圖中交點(diǎn)的實(shí)際意義是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列長度的三條線段中,能組成三角形的是( )

A.3cm5cm,8cm B.8cm8cm,18cmC.1cm 1cm,1cmD.3cm,4cm,8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a+b=5,ab=4,則a2ab+b2=( 。

A.29B.37C.21D.33

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,分別以點(diǎn)A,C為圓心,大于 AC長為半徑畫弧,兩弧相交于點(diǎn)M,N,作直線MN,與AC,BC分別交于點(diǎn)D,E,連接AE.

(1)求∠ADE的度數(shù)(直接寫出結(jié)果);
(2)當(dāng)AB=3,BC=4時,求△ABE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.

(1)求∠DAB的度數(shù).

(2)求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案