【題目】如圖,一個三角形的紙片ABC,其中∠A=∠C,
(1)把△ABC紙片按 (如圖1) 所示折疊,使點A落在BC邊上的點F處,DE是折痕.說明 BC∥DF;
(2)把△ABC紙片沿DE折疊,當點A落在四邊形BCED內(nèi)時 (如圖2),探索∠C與∠1+∠2之間的大小關(guān)系,并說明理由;
(3)當點A落在四邊形BCED外時 (如圖3),探索∠C與∠1、∠2之間的大小關(guān)系.(直接寫出結(jié)論)
【答案】(1)見解析;(2)∠1+∠2=2∠C;(3)∠1-∠2=2∠C.
【解析】
(1)根據(jù)折疊的性質(zhì)得∠DFE=∠A,由已知得∠A=∠C,于是得到∠DFE=∠C,即可得到結(jié)論;
(2)先根據(jù)四邊形的內(nèi)角和等于360°得出∠A+∠A′=∠1+∠2,再由圖形翻折變換的性質(zhì)即可得出結(jié)論;
(3)∠A′ED=∠AED(設(shè)為α),∠A′DE=∠ADE(設(shè)為β),于是得到∠2+2α=180°,∠1=β-∠BDE=β-(∠A+α),推出∠2-∠1=180°-(α+β)+∠A,根據(jù)三角形的內(nèi)角和得到∠A=180°-(α+β),證得∠2-∠1=2∠A,于是得到結(jié)論.
解:(1) 由折疊知∠A=∠DFE,
∵∠A=∠C,
∴∠DFE=∠C,
∴BC∥DF;
(2)∠1+∠2=2∠A.理由如下:
∵∠1+2∠AED=180°, ∠2+2∠ADE=180°,
∴∠1+∠2+2(∠ADE+∠AED)=360°.
∵∠A+∠ADE+∠AED=180°,
∴∠ADE+∠AED=180°-∠A,
∴∠1+∠2+2(180°-A)=360°,
即∠1+∠2=2∠C.
(3)∠1-∠2=2∠A.
∵2∠AED+∠1=180°,2∠ADE-∠2=180°,
∴2(∠ADE+∠AED)+∠1-∠2=360°.
∵∠A+∠ADE+∠AED=180°,
∴∠ADE+∠AED=180°-∠A,
∴∠1-∠2+2(180°-∠A)=360°,
即∠1-∠2=2∠C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有A,B兩個轉(zhuǎn)盤,其中轉(zhuǎn)盤A被分成4等份,轉(zhuǎn)盤B被分成3等份,并在每一份內(nèi)標上數(shù)字.現(xiàn)甲、乙兩人同時各轉(zhuǎn)動其中一個轉(zhuǎn)盤,轉(zhuǎn)盤停止后(當指針指在邊界線上時視為無效,重轉(zhuǎn)),若將A轉(zhuǎn)盤指針指向的數(shù)字記為x,B轉(zhuǎn)盤指針指向的數(shù)字記為y,從而確定點P的坐標為P(x,y).
(1)請用列表或畫樹狀圖的方法寫出所有可能得到的點P的坐標;
(2)計算點P在函數(shù)y= 圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,點是邊上的一個動點,過點作直線,設(shè)交的角平分線于點,交的外角平分線于點.
(1)求證:;
(2)當點運動到何處時,四邊形是矩形?并證明你的結(jié)論.
(3)當點運動到何處,且滿足什么條件時,四邊形是正方形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖EF∥CD,∠1+∠2=180°.
(1)試說明GD∥CA;
(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】菱形ABCD中,∠B=60°,AB=4,點E在BC上,CE=2,若點P是菱形上異于點E的另一點,CE=CP,則EP的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算題計算:(﹣2017)0+|1﹣ |﹣2cos45°+(﹣ )﹣2;
(1)計算:(﹣2017)0+|1﹣ |﹣2cos45°+(﹣ )﹣2;
(2)解不等式組: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com