【題目】如圖,已知,AD、AE分別為△ABC的中線和高,AB=13,AC=5.
(1)△ABD和△ACD的周長相差多少?
(2)△ABD和△ACD的面積有什么關系,請說明理由.
【答案】(1)△ABD和△ACD的周長相差是8;(2)△ABD和△ACD的面積相等.理由見解析.
【解析】
(1)分別表示出△ABD與△ACD的周長,由AD是BC的中線,可得它們的差=ABAC;
(2)三角形的中線把三角形分成面積相等的兩個三角形,據(jù)此答題即可.
(1)△ABD的周長是AB、BD、AD三邊的和
△ACD的周長是AC、CD、AD三邊的和
因為AD為△ABC的中線
∴BD=DC
所以△ABD和△ACD的周長差就是AB與AC的差
故△ABD和△ACD的周長相差是8;
(2)因為AD為△ABC的中線
∴BD=DC
所以△ABD和△ACD是等底同高的三角形
故△ABD和△ACD的面積相等.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系 xOy 中,點A,B的坐標分別為(-2,0),(1,0).同時將點A ,B先向左平移1個單位長度,再向上平移2個單位長度,得到點A,B的對應點依次為C,D,連接CD,AC, BD .
(1)寫出點C , D 的坐標;
(2)在 y 軸上是否存在點E,連接EA ,EB,使S△EAB=S四邊形ABDC?若存在,求出點E的坐標;若不存在,說明理由;
(3)點 P 是線段 AC 上的一個動點,連接 BP , DP ,當點 P 在線段 AC 上移動時(不與 A , C 重合),直接寫出CDP 、ABP 與BPD 之間的等量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖有一座拋物線形拱橋,橋下面在正常水位是AB寬20m,水位上升3m就達到警戒線CD,這是水面寬度為10m。
(1)在如圖的坐標系中求拋物線的解析式。
(2)若洪水到來時,水位以每小時0.2m的速度上升,從警戒線開始,再持續(xù)多少小時才能到拱橋頂?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)學興趣小組的小穎想測量教學樓前的一棵樹的樹高,下午課外活動時她測得一根長為1m的竹竿的影長是0.8m,但當她馬上測量樹高時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學樓的墻壁上(如圖),他先測得留在墻壁上的影高為1.2m,又測得地面的影長為2.6m,請你幫她算一下,樹高是( )
A、3.25m B、4.25m C、4.45m D、4.75m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,每個小正方形的邊長為1,在方格紙內△A′B′C′是將△ABC經(jīng)過一次平移后得到的.根據(jù)下列條件,利用網(wǎng)格點和直尺畫圖:
(1)補全△ABC;
(2)作出中線CD;
(3)畫出BC邊上的高線AE;
(4)在平移過程中,線段AB掃過的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸分別交于點A、B,與y軸交于點C,且OA=1,OB=3,頂點為D,對稱軸交x軸于點Q.
(1)求拋物線對應的二次函數(shù)的表達式;
(2)點P是拋物線的對稱軸上一點,以點P為圓心的圓經(jīng)過A、B兩點,且與直線CD相切,求點P的坐標;
(3)在拋物線的對稱軸上是否存在一點M,使得△DCM∽△BQC?如果存在,求出點M的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有公路l1同側、l2異側的兩個城鎮(zhèn)A,B,如下圖.電信部門要修建一座信號發(fā)射塔,按照設計要求,發(fā)射塔到兩個城鎮(zhèn)A,B的距離必須相等,到兩條公路l1,l2的距離也必須相等,發(fā)射塔C應修建在什么位置?請用尺規(guī)作圖找出所有符合條件的點,注明點C的位置.(保留作圖痕跡,不要求寫出畫法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC在平面直角坐標系中的位置如圖所示A、B、C三點在格點上.
(1)作出△ABC關于x軸對稱的△A1B1C1,并寫出點C1的坐標;
(2)作出△ABC關于y對稱的△A2B2C2,并寫出點C2的坐標.
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC于點D,點E為BC的中點,連接DE.
(1)求證:DE是半圓⊙O的切線;
(2)若∠BAC=30°,DE=2,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com