【題目】已知拋物線C:y=-x2+bx+c經(jīng)過A(-3,0)和B(0,3)兩點,將這條拋物線的頂點記為M,它的對稱軸與x軸的交點記為N.
(1)求拋物線C的表達(dá)式;
(2)求點M的坐標(biāo);
(3)將拋物線C平移到拋物線C′,拋物線C′的頂點記為M′,它的對稱軸與x軸的交點記為N′.如果以點M、N、M′、N′為頂點的四邊形是面積為16的平行四邊形,那么應(yīng)將拋物線C怎樣平移?為什么?
【答案】(1)y=-x2-2x+3;(2)M(-1,4).(3)將拋物線C向左或向右平移4個單位可得符合條件的拋物線C′或?qū)佄锞C先向左或向右平移4個單位,再向下平移8個單位,可得符合條件的拋物線C′.理由見解析.
【解析】
(1)直接把A(-3,0)和B(0,3)兩點代入拋物線y=-x2+bx+c,求出b,c的值即可;
(2)根據(jù)(1)中拋物線的解析式可得出其頂點坐標(biāo);
(3)根據(jù)平行四邊形的定義,可知有四種情形符合條件,如解答圖所示.需要分類討論.
解:(1)∵拋物線y=-x2+bx+c經(jīng)過A(-3,0)和B(0,3)兩點,
∴,
解得,
故此拋物線的解析式為:y=-x2-2x+3;
(2)∵由(1)知拋物線的解析式為:y=-x2-2x+3,
∴當(dāng)x=-時,y=4,
∴M(-1,4).
(3)由題意,以點M、N、M′、N′為頂點的平行四邊形的邊MN的對邊只能是M′N′,
∴MN∥M′N′且MN=M′N′.
∴MNNN′=16,
∴NN′=4.
i)當(dāng)M、N、M′、N′為頂點的平行四邊形是MNN′M′時,將拋物線C向左或向右平移4個單位可得符合條件的拋物線C′;
ii)當(dāng)M、N、M′、N′為頂點的平行四邊形是MNM′N′時,將拋物線C先向左或向右平移4個單位,再向下平移8個單位,可得符合條件的拋物線C′.
∴上述的四種平移,均可得到符合條件的拋物線C′.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(―3,6)、B(―9,一3),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應(yīng)點A′的坐標(biāo)是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,∠BAC=90°,AB=AC=1,點D是BC邊上的一個動點(不與B、C重合),在AC上取一點E,使∠ADE=45°.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍,并求出當(dāng)BD為何值時AE取得最小值?
(3)在AC上是否存在點E,使△ADE是等腰三角形?若存在,求AE的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小賢與小杰在探究某類二次函數(shù)問題時,經(jīng)歷了如下過程:
求解體驗:
(1)已知拋物線y=﹣x2+bx﹣3經(jīng)過點(﹣1,0),則b= ,頂點坐標(biāo) ,該拋物線關(guān)于點(0,1)成中心對稱的拋物線的表達(dá)式是 .
抽象感悟:
我們定義:對于拋物線y=ax2+bx+c(a≠0),以y軸上的點M(0,m)為中心,作該拋物線關(guān)于點M對稱的拋物線y',則我們又稱拋物線y'為拋物線y的“衍生拋物線”,點M為“衍生中心”.
(2)已知拋物線y=﹣x2﹣2x+5關(guān)于點(0,m)的衍生拋物線為y',若這兩條拋物線有交點,求m的取值范圍.
問題解決:
(3)已知拋物線y=ax2+2ax﹣b(a≠0)若拋物線y的衍生拋物線為y'=bx2﹣2bx+a2(b≠0),兩拋物線有兩個交點,且恰好是它們的頂點,求a,b的值及衍生中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一只不透明的袋子中裝有2個白球和2個黑球,這些球除顏色外都相同.
(1)若先從袋子中拿走m個白球,這時從袋子中隨機(jī)摸出一個球是黑球的事件為“必然事件”,則m的值為 ;
(2)若將袋子中的球攪勻后隨機(jī)摸出1個球(不放回),再從袋中余下的3個球中隨機(jī)摸出1個球,求兩次摸到的球顏色相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C為△ABD外接圓上的一動點(點C不在上,且不與點B,D重合),∠ACB=∠ABD=45°.
(1)求證:BD是該外接圓的直徑;
(2)連結(jié)CD,求證:AC=BC+CD;
(3)若△ABC關(guān)于直線AB的對稱圖形為△ABM,連接DM,試探究,三者之間滿足的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得A,C之間的距離為12cm,點B,D之間的距離為16m,則線段AB的長為
A. B. 10cmC. 20cmD. 12cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+2x﹣3與x軸交于A,B兩點(點A在點B的左側(cè)),將這條拋物線向右平移m(m>0)個單位長度,平移后的拋物線與x軸交于C,D兩點(點C在點D的左側(cè)),若B,C是線段AD的三等分點,則m的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系內(nèi)一點M(x,y)(x≠0),若則稱k為點M的“傾斜比”,如圖,⊙B與y軸相切于點A,點B的坐標(biāo)為(3,5),點P為⊙B上的動點,則點P的“傾斜比”k的最小值是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com