【題目】如圖,在矩形ABCD中,AB=8,AD=12,經(jīng)過A,D兩點(diǎn)的⊙O與邊BC相切于點(diǎn)E,則⊙O的半徑為( 。

A. 4 B. C. 5 D.

【答案】D

【解析】

連結(jié)EO并延長(zhǎng)交ADF,連接AO,由切線的性質(zhì)得OEBC,再利用平行線的性質(zhì)得到OFAD,則根據(jù)垂徑定理得到AF=DF=AD=6,由題意可證四邊形ABEF為矩形,則EF=AB=8,設(shè)⊙O的半徑為r,則OA=r,OF=8-r,然后在RtAOF中利用勾股定理得到(8-r)2+62=r2,再解方程求出r即可.

如圖,連結(jié)EO并延長(zhǎng)交ADF,連接AO,

∵⊙OBC邊相切于點(diǎn)E,

OEBC,

∵四邊形ABCD為矩形,

BCAD,

OFAD,

AF=DF=AD=6,

∵∠B=DAB=90°,OEBC,

∴四邊形ABEF為矩形,

EF=AB=8,

設(shè)⊙O的半徑為r,則OA=r,OF=8-r,

RtAOF中,∵OF2+AF2=OA2,

(8-r)2+62=r2,

解得r=,

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知A(2,0),B(1,-1),將線段OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為(0°<<135°).記點(diǎn)A的對(duì)應(yīng)點(diǎn)為A1,若點(diǎn)A1與點(diǎn)B的距離為,則( ).

A. 30° B. 45° C. 60° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國(guó)家八縱八橫高鐵網(wǎng)絡(luò)規(guī)劃中京昆通道的重要組成部分──西成高鐵于2017126日開通運(yùn)營(yíng),西安至成都列車運(yùn)行時(shí)間由14小時(shí)縮短為3.5小時(shí).張明和王強(qiáng)相約從成都坐高鐵到西安旅游.如圖,張明家(記作A)在成都東站(記作B)南偏西30°的方向且相距4000米,王強(qiáng)家(記作C)在成都東站南偏東60°的方向且相距3000米,則張明家與王強(qiáng)家的距離為( 。

A. 6000 B. 5000 C. 4000 D. 2000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB為⊙O直徑,BC為⊙O切線,切點(diǎn)為B,CO平行于弦AD,作直線DC

(1)求證:DC為⊙O切線;

(2) AD·OC=8,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AB⊙O的直徑,PA⊙O相切于點(diǎn)A,BP⊙O相交于點(diǎn)D,C⊙O上的一點(diǎn),分別連接CBCD,∠BCD60°.

(1)求∠ABD的度數(shù);

(2)AB6,求PD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<360°),得到矩形AEFG.

(1)如圖,當(dāng)點(diǎn)EBD上時(shí).求證:FD=CD;

(2)當(dāng)α為何值時(shí),GC=GB?畫出圖形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校環(huán)保社成員想測(cè)量斜坡CD旁一棵樹AB的高度,他們先在點(diǎn)C處測(cè)得樹頂B的仰角為60°,然后在坡頂D測(cè)得樹頂B的仰角為30°,已知DEEA,斜坡CD的長(zhǎng)度為30m,DE的長(zhǎng)為15m,則樹AB的高度是_____m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,AB與⊙O相切于點(diǎn)A.四邊形ABCD是平行四邊形,BC交⊙O于點(diǎn)E

1)證明直線CD與⊙O相切;

2)若⊙O的半徑為5 cm,弦CE的長(zhǎng)為8 cm,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則以下結(jié)論同時(shí)成立的是  

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案